Type 2 diabetes mellitus (T2DM) is a global burden, with an increasing number of people affected and increasing treatment costs. The advances in research and guidelines improve the management of blood glucose and related diseases, but T2DM and its complications are still a big challenge in clinical practice. T2DM is a metabolic disorder in which insulin signaling is impaired from reaching its effectors. Mitochondria are the “powerhouses” that not only generate the energy as adenosine triphosphate (ATP) using pyruvate supplied from glucose, free fatty acid (FFA), and amino acids (AA) but also regulate multiple cellular processes such as calcium homeostasis, redox balance, and apoptosis. Mitochondrial dysfunction leads to various diseases, including cardiovascular diseases, metabolic disorders, and cancer. The mitochondria are highly dynamic in adjusting their functions according to cellular conditions. The shape, morphology, distribution, and number of mitochondria reflect their function through various processes, collectively known as mitochondrial dynamics, including mitochondrial fusion, fission, biogenesis, transport, and mitophagy. These processes determine the overall mitochondrial health and vitality. More evidence supports the idea that dysregulated mitochondrial dynamics play essential roles in the pathophysiology of insulin resistance, obesity, and T2DM, as well as imbalanced mitochondrial dynamics found in T2DM. This review updates and discusses mitochondrial dynamics and the complex interactions between it and metabolic disorders.
Tài liệu tham khảo
Mary Oluwadamilola Haastrup et al., The Journey of Mitochondrial Protein Import and the Roadmap to Follow. International Journal of Molecular Sciences. 2023; 24 :. doi: 10.3390/ijms24032479
Himaja Pegadraju et al., Mechanistic and therapeutic role of Drp1 in the pathogenesis of stroke.. Gene. 2022; 855 :147130. doi: 10.1016/j.gene.2022.147130
Min Chen et al., Inhibition of diabetes-induced Drp1 deSUMOylation prevents retinal vascular lesions associated with diabetic retinopathy.. Experimental eye research. 2022; :109334. doi: 10.1016/j.exer.2022.109334
Meng‐Yuan Zhang et al., Inhibition of Drp1 ameliorates diabetic retinopathy by regulating mitochondrial homeostasis.. Experimental eye research. 2022; :109095. doi: 10.1016/j.exer.2022.109095
Dehui Liu et al., Downregulation of Uncoupling Protein 2(UCP2) Mediated by MicroRNA-762 Confers Cardioprotection and Participates in the Regulation of Dynamic Mitochondrial Homeostasis of Dynamin Related Protein1 (DRP1) After Myocardial Infarction in Mice. Frontiers in Cardiovascular Medicine. 2022; 8 :. doi: 10.3389/fcvm.2021.764064
Jun‐Ha Hwang et al., TAZ links exercise to mitochondrial biogenesis via mitochondrial transcription factor A. Nature Communications. 2022; 13 :. doi: 10.1038/s41467-022-28247-2
Jie Ding et al., Mdivi-1 alleviates cardiac fibrosis post myocardial infarction at infarcted border zone, possibly via inhibition of Drp1-Activated mitochondrial fission and oxidative stress.. Archives of biochemistry and biophysics. 2022; :109147. doi: 10.1016/j.abb.2022.109147
Karla E. Merz et al., Enrichment of the exocytosis protein STX4 in skeletal muscle remediates peripheral insulin resistance and alters mitochondrial dynamics via Drp1. Nature Communications. 2022; 13 :. doi: 10.1038/s41467-022-28061-w
Meng‐Yuan Zhang et al., TGR5 Activation Ameliorates Mitochondrial Homeostasis via Regulating the PKCδ/Drp1-HK2 Signaling in Diabetic Retinopathy. Frontiers in Cell and Developmental Biology. 2022; 9 :. doi: 10.3389/fcell.2021.759421
Qi Wu et al., Mangiferin Inhibits PDGF-BB-Induced Proliferation and Migration of Rat Vascular Smooth Muscle Cells and Alleviates Neointimal Formation in Mice through the AMPK/Drp1 Axis. Oxidative Medicine and Cellular Longevity. 2021; 2021 :. doi: 10.1155/2021/3119953
P. Finocchietto et al., Inhibition of Mitochondrial Fission by Drp-1 Blockade by Short-Term Leptin and Mdivi-1 Treatment Improves White Adipose Tissue Abnormalities in Obesity and Diabetes. Pharmacological Research. 2021; :. doi: 10.1016/j.phrs.2021.106028
Qian Wu et al., Ligustilide attenuates ischemic stroke injury by promoting Drp1-mediated mitochondrial fission via activation of AMPK. Phytomedicine. 2021; :. doi: 10.1016/j.phymed.2021.153884
Paulo H C Mesquita et al., Skeletal Muscle Ribosome and Mitochondrial Biogenesis in Response to Different Exercise Training Modalities. Frontiers in Physiology. 2021; 12 :. doi: 10.3389/fphys.2021.725866
Xie-sheng Chen et al., Anti-hyperlipidemic, Anti-inflammatory, and Ameliorative Effects of DRP1 Inhibition in Rats with Experimentally Induced Myocardial Infarction. Cardiovascular Toxicology. 2021; 21 :1000 - 1011. doi: 10.1007/s12012-021-09691-w
Yoomi Chun et al., AMPK–mTOR Signaling and Cellular Adaptations in Hypoxia. International Journal of Molecular Sciences. 2021; 22 :. doi: 10.3390/ijms22189765
Miriam Valera-Alberni et al., Crosstalk between Drp1 phosphorylation sites during mitochondrial remodeling and their impact on metabolic adaptation. Cell Reports. 2021; 36 :. doi: 10.1016/j.celrep.2021.109565
Rui-jun Ning et al., The mitochondria-targeted antioxidant MitoQ attenuated PM2.5-induced vascular fibrosis via regulating mitophagy. Redox Biology. 2021; 46 :. doi: 10.1016/j.redox.2021.102113
A. Gómez-Valadés et al., Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis. Cell Metabolism. 2021; 33 :1820 - 1835.e9. doi: 10.1016/j.cmet.2021.07.008
Wei Zhou et al., Dexmedetomidine maintains blood-brain barrier integrity by inhibiting Drp1-related endothelial mitochondrial dysfunction in ischemic stroke.. Acta biochimica et biophysica Sinica. 2021; :. doi: 10.1093/abbs/gmab092
Zhiwei Zhang et al., Pioglitazone Inhibits Diabetes-Induced Atrial Mitochondrial Oxidative Stress and Improves Mitochondrial Biogenesis, Dynamics, and Function Through the PPAR-γ/PGC-1α Signaling Pathway. Frontiers in Pharmacology. 2021; 12 :. doi: 10.3389/fphar.2021.658362
M. Marraudino et al., Hypothalamic Expression of Neuropeptide Y (NPY) and Pro-OpioMelanoCortin (POMC) in Adult Male Mice Is Affected by Chronic Exposure to Endocrine Disruptors. Metabolites. 2021; 11 :. doi: 10.3390/metabo11060368
Dongjoon Kim et al., Reduced Levels of Drp1 Protect against Development of Retinal Vascular Lesions in Diabetic Retinopathy. Cells. 2021; 10 :. doi: 10.3390/cells10061379
M. Adebayo et al., Mitochondrial fusion and fission: The fine‐tune balance for cellular homeostasis. The FASEB Journal. 2021; 35 :. doi: 10.1096/fj.202100067R
Guangfeng Geng et al., Receptor-mediated mitophagy regulates EPO production and protects against renal anemia. eLife. 2021; 10 :. doi: 10.7554/eLife.64480
Xiang-qing Xu et al., LncRNA NEAT1 accelerates renal tubular epithelial cell damage by modulating mitophagy via miR‐150‐5p–DRP1 axis in diabetic nephropathy. Experimental Physiology. 2021; 106 :1631 - 1642. doi: 10.1113/EP089547
S. Dewanjee et al., The Emerging Role of HDACs: Pathology and Therapeutic Targets in Diabetes Mellitus. Cells. 2021; 10 :. doi: 10.3390/cells10061340
Morgane Pengam et al., How do exercise training variables stimulate processes related to mitochondrial biogenesis in slow and fast trout muscle fibres?. Experimental Physiology. 2021; 106 :938 - 957. doi: 10.1113/EP089231
I. González-García et al., Divide et impera: How mitochondrial fission in astrocytes rules obesity. Molecular Metabolism. 2021; 45 :. doi: 10.1016/j.molmet.2020.101159
Feng He et al., Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. The Journal of Experimental Medicine. 2020; 218 :. doi: 10.1084/jem.20201416
K. Song et al., Increased Insulin Sensitivity by High-Altitude Hypoxia in Mice with High-Fat Diet-Induced Obesity Is Associated with Activated AMPK Signaling and Subsequently Enhanced Mitochondrial Biogenesis in Skeletal Muscles. Obesity Facts. 2020; 13 :455 - 472. doi: 10.1159/000508112
Zhen-peng Zuo et al., Mechanisms and Functions of Mitophagy and Potential Roles in Renal Disease. Frontiers in Physiology. 2020; 11 :. doi: 10.3389/fphys.2020.00935
Yen-Hsiang Chang et al., The Causal Role of Mitochondrial Dynamics in Regulating Innate Immunity in Diabetes. Frontiers in Endocrinology. 2020; 11 :. doi: 10.3389/fendo.2020.00445
B. Patel et al., Inhibition of mitochondrial fission and iNOS in the dorsal vagal complex protects from overeating and weight gain. Molecular Metabolism. 2020; 43 :. doi: 10.1016/j.molmet.2020.101123
K. Ma et al., Mitophagy, Mitochondrial Homeostasis, and Cell Fate. Frontiers in Cell and Developmental Biology. 2020; 8 :. doi: 10.3389/fcell.2020.00467
F. Dengler et al., Activation of AMPK under Hypoxia: Many Roads Leading to Rome. International Journal of Molecular Sciences. 2020; 21 :. doi: 10.3390/ijms21072428
Shan Lu et al., Hyperglycemia Acutely Increases Cytosolic Reactive Oxygen Species via O-linked GlcNAcylation and CaMKII Activation in Mouse Ventricular Myocytes. . 2020; 126 :e80 - e96. doi: 10.1161/CIRCRESAHA.119.316288
M. Méquinion et al., The Ghrelin-AgRP Neuron Nexus in Anorexia Nervosa: Implications for Metabolic and Behavioral Adaptations. Frontiers in Nutrition. 2020; 6 :. doi: 10.3389/fnut.2019.00190
Rong Yu et al., The phosphorylation status of Ser-637 in dynamin-related protein 1 (Drp1) does not determine Drp1 recruitment to mitochondria. The Journal of Biological Chemistry. 2019; 294 :17262 - 17277. doi: 10.1074/jbc.RA119.008202
W. Dai et al., Dysregulated Mitochondrial Dynamics and Metabolism in Obesity, Diabetes, and Cancer. Frontiers in Endocrinology. 2019; 10 :. doi: 10.3389/fendo.2019.00570
Lei Gao et al., H2 relaxin ameliorates angiotensin II-induced endothelial dysfunction through inhibition of excessive mitochondrial fission.. Biochemical and biophysical research communications. 2019; 512 4 :799-805. doi: 10.1016/j.bbrc.2019.03.112
Jing Yang et al., HDAC inhibition induces autophagy and mitochondrial biogenesis to maintain mitochondrial homeostasis during cardiac ischemia/reperfusion injury.. Journal of molecular and cellular cardiology. 2019; 130 :36-48. doi: 10.1016/j.yjmcc.2019.03.008
Rong Yu et al., Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery. The EMBO Journal. 2019; 38 :. doi: 10.15252/embj.201899748
Yi Ren et al., Critical role of AMPK in redox regulation under glucose starvation. Redox Biology. 2019; 25 :. doi: 10.1016/j.redox.2019.101154
S. Kamerkar et al., Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nature Communications. 2018; 9 :. doi: 10.1038/s41467-018-07543-w
Hung-Yu Lin et al., The Causal Role of Mitochondrial Dynamics in Regulating Insulin Resistance in Diabetes: Link through Mitochondrial Reactive Oxygen Species. Oxidative Medicine and Cellular Longevity. 2018; 2018 :. doi: 10.1155/2018/7514383
Ping Wei et al., RNF34 modulates the mitochondrial biogenesis and exercise capacity in muscle and lipid metabolism through ubiquitination of PGC-1 in Drosophila. Acta Biochimica et Biophysica Sinica. 2018; 50 :1038–1046. doi: 10.1093/abbs/gmy106
Sungho Jin et al., Mitochondrial Dynamics and Hypothalamic Regulation of Metabolism.. Endocrinology. 2018; 159 10 :3596-3604. doi: 10.1210/en.2018-00667
Guifeng Xu et al., Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: population based study. The BMJ. 2018; 362 :. doi: 10.1136/bmj.k1497
Tanila Wood Dos Santos et al., Effects of Polyphenols on Thermogenesis and Mitochondrial Biogenesis. International Journal of Molecular Sciences. 2018; 19 :. doi: 10.3390/ijms19092757
K. Palikaras et al., Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nature Cell Biology. 2018; 20 :1013-1022. doi: 10.1038/s41556-018-0176-2
Kuang‐Hueih Chen et al., Epigenetic Dysregulation of the Dynamin-Related Protein 1 Binding Partners MiD49 and MiD51 Increases Mitotic Mitochondrial Fission and Promotes Pulmonary Arterial Hypertension: Mechanistic and Therapeutic Implications. Circulation. 2018; 138 :287–304. doi: 10.1161/CIRCULATIONAHA.117.031258
Ilias Gkikas et al., The Role of Mitophagy in Innate Immunity. Frontiers in Immunology. 2018; 9 :. doi: 10.3389/fimmu.2018.01283
K. Bullard et al., Prevalence of Diagnosed Diabetes in Adults by Diabetes Type — United States, 2016. Morbidity and Mortality Weekly Report. 2018; 67 :359 - 361. doi: 10.15585/mmwr.mm6712a2
Meng-jie Huang et al., The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission. Redox Biology. 2018; 16 :303 - 313. doi: 10.1016/j.redox.2018.03.010
Sarah R Pickles et al., Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Current Biology. 2018; 28 :R170-R185. doi: 10.1016/j.cub.2018.01.004
C. M. O. Volpe et al., Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death & Disease. 2018; 9 :. doi: 10.1038/s41419-017-0135-z
Shiori Sekine et al., PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biology. 2018; 16 :. doi: 10.1186/s12915-017-0470-7
Tomoki Bo et al., Calmodulin-dependent protein kinase II (CaMKII) mediates radiation-induced mitochondrial fission by regulating the phosphorylation of dynamin-related protein 1 (Drp1) at serine 616.. Biochemical and biophysical research communications. 2018; 495 2 :1601-1607. doi: 10.1016/j.bbrc.2017.12.012
Y. Xu et al., YiQiFuMai Powder Injection Protects against Ischemic Stroke via Inhibiting Neuronal Apoptosis and PKCδ/Drp1-Mediated Excessive Mitochondrial Fission. Oxidative Medicine and Cellular Longevity. 2017; 2017 :. doi: 10.1155/2017/1832093
G. Dodd et al., Insulin action in the brain: Roles in energy and glucose homeostasis. Journal of Neuroendocrinology. 2017; 29 :. doi: 10.1111/jne.12513
P. A. Li et al., Mitochondrial biogenesis in neurodegeneration. Journal of Neuroscience Research. 2017; 95 :. doi: 10.1002/jnr.24042
Shaorui Chen et al., Ghrelin receptors mediate ghrelin‐induced excitation of agouti‐related protein/neuropeptide Y but not pro‐opiomelanocortin neurons. Journal of Neurochemistry. 2017; 142 :. doi: 10.1111/jnc.14080
Bobo Zhang et al., d-Chiro inositol ameliorates endothelial dysfunction via inhibition of oxidative stress and mitochondrial fission.. Molecular nutrition & food research. 2017; 61 8 :. doi: 10.1002/mnfr.201600710
S. Srinivasan et al., Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection.. Biochimica et biophysica acta. Bioenergetics. 2017; 1858 8 :602-614. doi: 10.1016/j.bbabio.2017.01.004
M. Rogers et al., Dynamin-Related Protein 1 Inhibition Attenuates Cardiovascular Calcification in the Presence of Oxidative Stress. Circulation Research. 2017; 121 :220–233. doi: 10.1161/CIRCRESAHA.116.310293
Hsiuchen Chen et al., Mitochondrial Dynamics in Regulating the Unique Phenotypes of Cancer and Stem Cells.. Cell metabolism. 2017; 26 1 :39-48. doi: 10.1016/j.cmet.2017.05.016
Sara Ramírez et al., Mitochondrial Dynamics Mediated by Mitofusin 1 Is Required for POMC Neuron Glucose-Sensing and Insulin Release Control.. Cell metabolism. 2017; 25 6 :1390-1399.e6. doi: 10.1016/j.cmet.2017.05.010
K. Timper et al., Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Disease Models & Mechanisms. 2017; 10 :679 - 689. doi: 10.1242/dmm.026609
Xinyu Zhuang et al., Salidroside inhibits high-glucose induced proliferation of vascular smooth muscle cells via inhibiting mitochondrial fission and oxidative stress. Experimental and Therapeutic Medicine. 2017; 14 :515 - 524. doi: 10.3892/etm.2017.4541
B. M. Filippi et al., Dynamin-Related Protein 1-Dependent Mitochondrial Fission Changes in the Dorsal Vagal Complex Regulate Insulin Action.. Cell reports. 2017; 18 10 :2301-2309. doi: 10.1016/j.celrep.2017.02.035
A. Santoro et al., DRP1 Suppresses Leptin and Glucose Sensing of POMC Neurons.. Cell metabolism. 2017; 25 3 :647-660. doi: 10.1016/j.cmet.2017.01.003
V. Lahera et al., Role of Mitochondrial Dysfunction in Hypertension and Obesity. Current Hypertension Reports. 2017; 19 :1-9. doi: 10.1007/s11906-017-0710-9
Mingge Ding et al., Inhibition of dynamin-related protein 1 protects against myocardial ischemia–reperfusion injury in diabetic mice. Cardiovascular Diabetology. 2017; 16 :. doi: 10.1186/s12933-017-0501-2
Traci L. Marin et al., AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Science Signaling. 2017; 10 :. doi: 10.1126/scisignal.aaf7478
S. Rovira-Llopis et al., Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biology. 2017; 11 :637 - 645. doi: 10.1016/j.redox.2017.01.013
J. M. Suárez-Rivero et al., Mitochondrial Dynamics in Mitochondrial Diseases. Diseases. 2016; 5 :. doi: 10.3390/diseases5010001
P. Newsholme et al., Molecular mechanisms of ROS production and oxidative stress in diabetes.. The Biochemical journal. 2016; 473 24 :4527-4550. doi: 10.1042/BCJ20160503C
Sorabh Sharma et al., Histone deacetylase inhibitors: Future therapeutics for insulin resistance and type 2 diabetes.. Pharmacological research. 2016; 113 Pt A :320-326. doi: 10.1016/j.phrs.2016.09.009
Qilong Wang et al., Metformin Suppresses Diabetes-Accelerated Atherosclerosis via the Inhibition of Drp1-Mediated Mitochondrial Fission. Diabetes. 2016; 66 :193 - 205. doi: 10.2337/db16-0915
Diaz-MoralesNoelia et al., Are Mitochondrial Fusion and Fission Impaired in Leukocytes of Type 2 Diabetic Patients. Antioxidants & Redox Signaling. 2016; 25 :108-115. doi: 10.1089/ARS.2016.6707
Yi Li et al., Inhibition of Mitochondrial Fission and NOX2 Expression Prevent NLRP3 Inflammasome Activation in the Endothelium: The Role of Corosolic Acid Action in the Amelioration of Endothelial Dysfunction.. Antioxidants & redox signaling. 2016; 24 16 :893-908. doi: 10.1089/ars.2015.6479
C. Toda et al., UCP2 Regulates Mitochondrial Fission and Ventromedial Nucleus Control of Glucose Responsiveness. Cell. 2016; 164 :872-883. doi: 10.1016/j.cell.2016.02.010
César Vásquez-Trincado et al., Mitochondrial dynamics, mitophagy and cardiovascular disease. The Journal of Physiology. 2016; 594 :. doi: 10.1113/JP271301
N. Pavlova et al., The Emerging Hallmarks of Cancer Metabolism.. Cell metabolism. 2016; 23 1 :27-47. doi: 10.1016/j.cmet.2015.12.006
R. Whitaker et al., Mitochondrial Biogenesis as a Pharmacological Target: A New Approach to Acute and Chronic Diseases.. Annual review of pharmacology and toxicology. 2016; 56 :229-49. doi: 10.1146/annurev-pharmtox-010715-103155
J. Archibald et al., Endosymbiosis and Eukaryotic Cell Evolution. Current Biology. 2015; 25 :R911-R921. doi: 10.1016/j.cub.2015.07.055
R. Lightowlers et al., Mutations causing mitochondrial disease: What is new and what challenges remain?. Science. 2015; 349 :1494 - 1499. doi: 10.1126/science.aac7516
Jia Li et al., Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction.. Journal of molecular and cellular cardiology. 2015; 86 :62-74. doi: 10.1016/j.yjmcc.2015.07.010
Lixiang Wang et al., Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration. Diabetologia. 2015; 58 :2371-2380. doi: 10.1007/s00125-015-3704-7
G. Civiletto et al., Opa1 Overexpression Ameliorates the Phenotype of Two Mitochondrial Disease Mouse Models. Cell Metabolism. 2015; 21 :845 - 854. doi: 10.1016/j.cmet.2015.04.016
S. Heinonen et al., Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity. Diabetes. 2015; 64 :3135 - 3145. doi: 10.2337/db14-1937
Hao Wu et al., Hypoxia activation of mitophagy and its role in disease pathogenesis.. Antioxidants & redox signaling. 2015; 22 12 :1032-46. doi: 10.1089/ars.2014.6204
Huifang Wei et al., Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses.. Biochimica et biophysica acta. 2015; 1853 10 Pt B :2784-90. doi: 10.1016/j.bbamcr.2015.03.013
G. Dodd et al., Leptin and Insulin Act on POMC Neurons to Promote the Browning of White Fat. Cell. 2015; 160 :88-104. doi: 10.1016/j.cell.2014.12.022
V. Carelli et al., Mitochondrial DNA: Impacting Central and Peripheral Nervous Systems. Neuron. 2014; 84 :1126-1142. doi: 10.1016/j.neuron.2014.11.022
K. Marcinko et al., The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise. Experimental Physiology. 2014; 99 :. doi: 10.1113/expphysiol.2014.082255
M. Montgomery et al., Mitochondrial dysfunction and insulin resistance: an update. Endocrine Connections. 2014; 4 :R1 - R15. doi: 10.1530/EC-14-0092
Carole M. Nasrallah et al., Mitochondrial dynamics in the central regulation of metabolism. Nature Reviews Endocrinology. 2014; 10 :650-658. doi: 10.1038/nrendo.2014.160
K. Labbé et al., Determinants and functions of mitochondrial behavior.. Annual review of cell and developmental biology. 2014; 30 :357-91. doi: 10.1146/annurev-cellbio-101011-155756
F. Sanchis-Gomar et al., Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches.. Current pharmaceutical design. 2014; 20 35 :5619-33. doi: 10.2174/1381612820666140306095106
T. Valero et al., Mitochondrial biogenesis: pharmacological approaches.. Current pharmaceutical design. 2014; 20 35 :5507-9. doi: 10.2174/138161282035140911142118
Prashant Mishra et al., Mitochondrial dynamics and inheritance during cell division, development and disease. Nature Reviews Molecular Cell Biology. 2014; 15 :634-646. doi: 10.1038/nrm3877
Min Zhu et al., Histone Decacetylase Inhibitors Prevent Mitochondrial Fragmentation and Elicit Early Neuroprotection against MPP+. CNS Neuroscience & Therapeutics. 2014; 20 :. doi: 10.1111/cns.12217
S. Archer et al., Mitochondrial dynamics--mitochondrial fission and fusion in human diseases.. The New England journal of medicine. 2013; 369 23 :2236-51. doi: 10.1056/NEJMra1215233
M. Morita et al., mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation.. Cell metabolism. 2013; 18 5 :698-711. doi: 10.1016/j.cmet.2013.10.001
Marc Schneeberger et al., Mitofusin 2 in POMC Neurons Connects ER Stress with Leptin Resistance and Energy Imbalance. Cell. 2013; 155 :172-187. doi: 10.1016/j.cell.2013.09.003
M. Dietrich et al., Mitochondrial Dynamics Controlled by Mitofusins Regulate Agrp Neuronal Activity and Diet-Induced Obesity. Cell. 2013; 155 :188-199. doi: 10.1016/j.cell.2013.09.004
B. Edgett et al., Dissociation of Increases in PGC-1α and Its Regulators from Exercise Intensity and Muscle Activation Following Acute Exercise. PLoS ONE. 2013; 8 :. doi: 10.1371/journal.pone.0071623
D. Serra et al., Mitochondrial fatty acid oxidation in obesity.. Antioxidants & redox signaling. 2013; 19 3 :269-84. doi: 10.1089/ars.2012.4875
Kai Mao et al., The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy.. Developmental cell. 2013; 26 1 :9-18. doi: 10.1016/j.devcel.2013.05.024
M. Komatsu et al., Glucose‐stimulated insulin secretion: A newer perspective. Journal of Diabetes Investigation. 2013; 4 :511 - 516. doi: 10.1111/jdi.12094
M. Liesa et al., Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure.. Cell metabolism. 2013; 17 4 :491-506. doi: 10.1016/j.cmet.2013.03.002
O. Loson et al., Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Molecular Biology of the Cell. 2013; 24 :659 - 667. doi: 10.1091/mbc.E12-10-0721
L. Varela et al., Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO reports. 2012; 13 :. doi: 10.1038/embor.2012.174
C. Bruce et al., Overexpression of Sphingosine Kinase 1 Prevents Ceramide Accumulation and Ameliorates Muscle Insulin Resistance in High-Fat Diet–Fed Mice. Diabetes. 2012; 61 :3148 - 3155. doi: 10.2337/db12-0029
Scott B Vafai et al., Mitochondrial disorders as windows into an ancient organelle. Nature. 2012; 491 :374-383. doi: 10.1038/nature11707
Liang Peng et al., Involvement of Dynamin-Related Protein 1 in Free Fatty Acid-Induced INS-1-Derived Cell Apoptosis. PLoS ONE. 2012; 7 :. doi: 10.1371/journal.pone.0049258
D. Chan et al., Fusion and fission: interlinked processes critical for mitochondrial health.. Annual review of genetics. 2012; 46 :265-87. doi: 10.1146/annurev-genet-110410-132529
B. Westermann et al., Bioenergetic role of mitochondrial fusion and fission.. Biochimica et biophysica acta. 2012; 1817 10 :1833-8. doi: 10.1016/j.bbabio.2012.02.033
D. Wallace et al., Mitochondria and cancer. Nature Reviews Cancer. 2012; 12 :685-698. doi: 10.1038/nrc3365
R. Scarpulla et al., Transcriptional integration of mitochondrial biogenesis. Trends in Endocrinology & Metabolism. 2012; 23 :459-466. doi: 10.1016/j.tem.2012.06.006
C. Kusminski et al., Mitochondrial dysfunction in white adipose tissue. Trends in Endocrinology & Metabolism. 2012; 23 :435-443. doi: 10.1016/j.tem.2012.06.004
R. Youle et al., Mitochondrial Fission, Fusion, and Stress. Science. 2012; 337 :1062 - 1065. doi: 10.1126/science.1219855
Jee Suk Lee et al., Histone deacetylase inhibitors induce mitochondrial elongation. Journal of Cellular Physiology. 2012; 227 :. doi: 10.1002/jcp.23027
O. Larsson et al., Distinct perturbation of the translatome by the antidiabetic drug metformin. Proceedings of the National Academy of Sciences. 2012; 109 :8977 - 8982. doi: 10.1073/pnas.1201689109
Nathan L. Price et al., SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function.. Cell metabolism. 2012; 15 5 :675-90. doi: 10.1016/j.cmet.2012.04.003
Pedro M. Quirós et al., Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. The EMBO Journal. 2012; 31 :. doi: 10.1038/emboj.2012.70
D. Hardie et al., AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology. 2012; 13 :251-262. doi: 10.1038/nrm3311
David Sebastián et al., Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proceedings of the National Academy of Sciences. 2012; 109 :5523 - 5528. doi: 10.1073/pnas.1108220109
Lloye M. Dillon et al., The role of PGC‐1 coactivators in aging skeletal muscle and heart. IUBMB Life. 2012; 64 :. doi: 10.1002/iub.608
Wenjian Wang et al., Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells.. Cell metabolism. 2012; 15 2 :186-200. doi: 10.1016/j.cmet.2012.01.009
Huei-Fen Jheng et al., Mitochondrial Fission Contributes to Mitochondrial Dysfunction and Insulin Resistance in Skeletal Muscle. Molecular and Cellular Biology. 2011; 32 :309 - 319. doi: 10.1128/MCB.05603-11
Qing Zhong et al., Diabetic retinopathy and damage to mitochondrial structure and transport machinery.. Investigative ophthalmology & visual science. 2011; 52 12 :8739-46. doi: 10.1167/iovs.11-8045
Yunlei Yang et al., Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop. Cell. 2011; 146 :992-1003. doi: 10.1016/j.cell.2011.07.039
M. Mihaylova et al., The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology. 2011; 13 :1016-1023. doi: 10.1038/ncb2329
S. Noeman et al., Biochemical Study of Oxidative Stress Markers in the Liver, Kidney and Heart of High Fat Diet Induced Obesity in Rats. Diabetology & Metabolic Syndrome. 2011; 3 :17 - 17. doi: 10.1186/1758-5996-3-17
Sherene M. Shenouda et al., Altered Mitochondrial Dynamics Contributes to Endothelial Dysfunction in Diabetes Mellitus. Circulation. 2011; 124 :444–453. doi: 10.1161/CIRCULATIONAHA.110.014506
Linh Vong et al., Leptin Action on GABAergic Neurons Prevents Obesity and Reduces Inhibitory Tone to POMC Neurons. Neuron. 2011; 71 :142-154. doi: 10.1016/j.neuron.2011.05.028
D. Hood et al., Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle: implications for health and disease.. Comprehensive Physiology. 2011; 1 3 :1119-34. doi: 10.1002/cphy.c100074
G. Semenza et al., Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning.. Biochimica et biophysica acta. 2011; 1813 7 :1263-8. doi: 10.1016/j.bbamcr.2010.08.006
David F. Kashatus et al., RalA and RalBP1 regulate mitochondrial fission at mitosis. Nature cell biology. 2011; 13 :1108 - 1115. doi: 10.1038/ncb2310
M. Brand et al., Assessing mitochondrial dysfunction in cells. Biochemical Journal. 2011; 437 :575 - 575. doi: 10.1042/BJ20110162
J. Holloszy et al., Regulation of mitochondrial biogenesis and GLUT4 expression by exercise.. Comprehensive Physiology. 2011; 1 2 :921-40. doi: 10.1002/cphy.c100052
P. Fernandez-Marcos et al., Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis.. The American journal of clinical nutrition. 2011; 93 4 :884S-90. doi: 10.3945/ajcn.110.001917
S. Diano et al., New aspects of melanocortin signaling: A role for PRCP in α-MSH degradation. Frontiers in Neuroendocrinology. 2011; 32 :70-83. doi: 10.1016/j.yfrne.2010.09.001
D. P. Christensen et al., Histone Deacetylase (HDAC) Inhibition as a Novel Treatment for Diabetes Mellitus. Molecular Medicine. 2011; 17 :378-390. doi: 10.2119/molmed.2011.00021
B. Westermann et al., Mitochondrial fusion and fission in cell life and death. Nature Reviews Molecular Cell Biology. 2010; 11 :872-884. doi: 10.1038/nrm3013
Juston Weems et al., Class II Histone Deacetylases Limit GLUT4 Gene Expression during Adipocyte Differentiation*. The Journal of Biological Chemistry. 2010; 286 :460 - 468. doi: 10.1074/jbc.M110.157107
Ferdinando Giacco et al., Oxidative stress and diabetic complications.. Circulation research. 2010; 107 9 :1058-70. doi: 10.1161/CIRCRESAHA.110.223545
Chuang-Rung Chang et al., Dynamic regulation of mitochondrial fission through modification of the dynamin‐related protein Drp1. Annals of the New York Academy of Sciences. 2010; 1201 :. doi: 10.1111/j.1749-6632.2010.05629.x
V. Samuel et al., Lipid-induced insulin resistance: unravelling the mechanism. The Lancet. 2010; 375 :2267-2277. doi: 10.1016/S0140-6736(10)60408-4
B. Egan et al., Exercise intensity‐dependent regulation of peroxisome proliferator‐activated receptor γ coactivator‐1α mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. The Journal of Physiology. 2010; 588 :. doi: 10.1113/jphysiol.2010.188011
M. Iwabu et al., Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature. 2010; 464 :1313-1319. doi: 10.1038/nature08991
P. Schrauwen et al., Mitochondrial dysfunction and lipotoxicity.. Biochimica et biophysica acta. 2010; 1801 3 :266-71. doi: 10.1016/j.bbalip.2009.09.011
T. Wenz et al., Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proceedings of the National Academy of Sciences. 2009; 106 :20405 - 20410. doi: 10.1073/pnas.0911570106
J. Viña et al., Mitochondrial biogenesis in exercise and in ageing.. Advanced drug delivery reviews. 2009; 61 14 :1369-74. doi: 10.1016/j.addr.2009.06.006
D. Shackelford et al., The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nature Reviews Cancer. 2009; 9 :563-575. doi: 10.1038/nrc2676
Thomas Büch et al., Pertussis Toxin-sensitive Signaling of Melanocortin-4 Receptors in Hypothalamic GT1-7 Cells Defines Agouti-related Protein as a Biased Agonist*. The Journal of Biological Chemistry. 2009; 284 :26411 - 26420. doi: 10.1074/jbc.M109.039339
C. Cantó et al., AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009; 458 :1056-1060. doi: 10.1038/nature07813
Fan Lan et al., SIRT1 Modulation of the Acetylation Status, Cytosolic Localization, and Activity of LKB1. Journal of Biological Chemistry. 2008; 283 :27628 - 27635. doi: 10.1074/jbc.M805711200
M. Fulco et al., Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt.. Developmental cell. 2008; 14 5 :661-73. doi: 10.1016/j.devcel.2008.02.004
S. McGee et al., AMP-Activated Protein Kinase Regulates GLUT4 Transcription by Phosphorylating Histone Deacetylase 5. Diabetes. 2008; 57 :860 - 867. doi: 10.2337/db07-0843
K. McClellan et al., GABAB receptors role in cell migration and positioning within the ventromedial nucleus of the hypothalamus. Neuroscience. 2008; 151 :1119-1131. doi: 10.1016/j.neuroscience.2007.11.048
D. Kohno et al., Ghrelin raises [Ca2+]i via AMPK in hypothalamic arcuate nucleus NPY neurons.. Biochemical and biophysical research communications. 2008; 366 2 :388-92. doi: 10.1016/J.BBRC.2007.11.166
C. Bonnard et al., Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice.. The Journal of clinical investigation. 2008; 118 2 :789-800. doi: 10.1172/JCI32601
G. Twig et al., Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. The EMBO Journal. 2008; 27 :. doi: 10.1038/sj.emboj.7601963
M. Claret et al., AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons.. The Journal of clinical investigation. 2007; 117 8 :2325-36. doi: 10.1172/JCI31516
S. Jäger et al., AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proceedings of the National Academy of Sciences. 2007; 104 :12017 - 12022. doi: 10.1073/pnas.0705070104
B. Beck et al., Neuropeptide Y in normal eating and in genetic and dietary-induced obesity. Philosophical Transactions of the Royal Society B: Biological Sciences. 2006; 361 :1159 - 1185. doi: 10.1098/rstb.2006.1855
I. Boldogh et al., Interactions of mitochondria with the actin cytoskeleton.. Biochimica et biophysica acta. 2006; 1763 5-6 :450-62. doi: 10.1016/J.BBAMCR.2006.02.014
Tianzheng Yu et al., Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology.. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103 8 :2653-8. doi: 10.1073/PNAS.0511154103
S. Sternson et al., Topographic mapping of VMH → arcuate nucleus microcircuits and their reorganization by fasting. Nature Neuroscience. 2005; 8 :1356-1363. doi: 10.1038/nn1550
M. Roden et al., Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. International Journal of Obesity. 2005; 29 :S111-S115. doi: 10.1038/sj.ijo.0803102
Hsiuchen Chen et al., Disruption of Fusion Results in Mitochondrial Heterogeneity and Dysfunction*. Journal of Biological Chemistry. 2005; 280 :26185 - 26192. doi: 10.1074/JBC.M503062200
R. Cone et al., Anatomy and regulation of the central melanocortin system. Nature Neuroscience. 2005; 8 :571-578. doi: 10.1038/nn1455
S. Nemoto et al., SIRT1 Functionally Interacts with the Metabolic Regulator and Transcriptional Coactivator PGC-1α*. Journal of Biological Chemistry. 2005; 280 :16456 - 16460. doi: 10.1074/jbc.M501485200
J. Lemasters et al., Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging.. Rejuvenation research. 2005; 8 1 :3-5. doi: 10.1089/REJ.2005.8.3
Kanji A. Takahashi et al., Fasting induces a large, leptin-dependent increase in the intrinsic action potential frequency of orexigenic arcuate nucleus neuropeptide Y/Agouti-related protein neurons.. Endocrinology. 2005; 146 3 :1043-7. doi: 10.1210/EN.2004-1397
B. Lowell et al., Mitochondrial Dysfunction and Type 2 Diabetes. Science. 2005; 307 :384 - 387. doi: 10.1126/SCIENCE.1104343
I. Vanhorebeek et al., Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. The Lancet. 2005; 365 :53-59. doi: 10.1016/S0140-6736(04)17665-4
A. Garnier et al., Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. The FASEB Journal. 2005; 19 :43 - 52. doi: 10.1096/fj.04-2173com
C. Kaiser et al., Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation. BMC Biology. 2004; 2 :23 - 23. doi: 10.1186/1741-7007-2-23
C. Mullins et al., The Biogenesis of Cellular Organelles. . 2004; :. doi: 10.1007/b138220
J. Paltauf‐Doburzynska et al., Hyperglycemic Conditions Affect Shape and Ca2+ Homeostasis of Mitochondria in Endothelial Cells. Journal of Cardiovascular Pharmacology. 2004; 44 :423-436. doi: 10.1097/01.fjc.0000139449.64337.1b
C. Bastie et al., CD36 in myocytes channels fatty acids to a lipase-accessible triglyceride pool that is related to cell lipid and insulin responsiveness.. Diabetes. 2004; 53 9 :2209-16. doi: 10.2337/DIABETES.53.9.2209
R. Shulman et al., Energetic basis of brain activity: implications for neuroimaging. Trends in Neurosciences. 2004; 27 :489-495. doi: 10.1016/j.tins.2004.06.005
G. King et al., Hyperglycemia-induced oxidative stress in diabetic complications. Histochemistry and Cell Biology. 2004; 122 :333-338. doi: 10.1007/s00418-004-0678-9
A. Feldstein et al., Free fatty acids promote hepatic lipotoxicity by stimulating TNF‐α expression via a lysosomal pathway. Hepatology. 2004; 40 :. doi: 10.1002/hep.20283
M. Top et al., Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nature Neuroscience. 2004; 7 :493-494. doi: 10.1038/nn1226
L. Griparić et al., Loss of the Intermembrane Space Protein Mgm1/OPA1 Induces Swelling and Localized Constrictions along the Lengths of Mitochondria*. Journal of Biological Chemistry. 2004; 279 :18792 - 18798. doi: 10.1074/JBC.M400920200
Y. Nishio et al., Regulation and Role of the Mitochondrial Transcription Factor in the Diabetic Rat Heart. Annals of the New York Academy of Sciences. 2004; 1011 :. doi: 10.1196/annals.1293.009
A. Russell et al., Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle.. Diabetes. 2003; 52 12 :2874-81. doi: 10.2337/DIABETES.52.12.2874
K. Short et al., Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity.. Diabetes. 2003; 52 8 :1888-96. doi: 10.2337/DIABETES.52.8.1888
M. Cowley et al., The Distribution and Mechanism of Action of Ghrelin in the CNS Demonstrates a Novel Hypothalamic Circuit Regulating Energy Homeostasis. Neuron. 2003; 37 :649-661. doi: 10.1016/S0896-6273(03)00063-1
H. Pilegaard et al., Exercise induces transient transcriptional activation of the PGC‐1α gene in human skeletal muscle. The Journal of Physiology. 2003; 546 :. doi: 10.1113/jphysiol.2002.034850
Hsiuchen Chen et al., Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of Cell Biology. 2003; 160 :189 - 200. doi: 10.1083/jcb.200211046
K. Baar et al., Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC‐1. The FASEB Journal. 2002; 16 :1879 - 1886. doi: 10.1096/fj.02-0367com
D. Kelley et al., Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes.. Diabetes. 2002; 51 10 :2944-50. doi: 10.2337/DIABETES.51.10.2944
B. Hegarty et al., Increased efficiency of fatty acid uptake contributes to lipid accumulation in skeletal muscle of high fat-fed insulin-resistant rats.. Diabetes. 2002; 51 5 :1477-84. doi: 10.2337/DIABETES.51.5.1477
O. Bachmann et al., Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans.. Diabetes. 2001; 50 11 :2579-84. doi: 10.2337/DIABETES.50.11.2579
M. Cowley et al., Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001; 411 :480-484. doi: 10.1038/35078085
D. Hood et al., Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle.. Journal of applied physiology. 2001; 90 3 :1137-57. doi: 10.1152/JAPPL.2001.90.3.1137
D. Spanswick et al., Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nature Neuroscience. 2000; 3 :757-758. doi: 10.1038/77660
D. Kelley et al., Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss.. American journal of physiology. Endocrinology and metabolism. 1999; 277 6 :E1130-E1141. doi: 10.1152/ajpendo.1999.277.6.E1130
J. Simoneau et al., Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. The FASEB Journal. 1999; 13 :2051 - 2060. doi: 10.1096/fasebj.13.14.2051
C. Schmitz‐Peiffer et al., Ceramide Generation Is Sufficient to Account for the Inhibition of the Insulin-stimulated PKB Pathway in C2C12 Skeletal Muscle Cells Pretreated with Palmitate*. The Journal of Biological Chemistry. 1999; 274 :24202 - 24210. doi: 10.1074/jbc.274.34.24202
Zhidan Wu et al., Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1. Cell. 1999; 98 :115-124. doi: 10.1016/S0092-8674(00)80611-X
F. Kokot et al., Effects of Neuropeptide Y on Appetite. Mineral and Electrolyte Metabolism. 1999; 25 :303 - 305. doi: 10.1159/000057464
C. Broberger et al., The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice.. Proceedings of the National Academy of Sciences of the United States of America. 1998; 95 25 :15043-8. doi: 10.1073/PNAS.95.25.15043
T. M. Hahn et al., Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature Neuroscience. 1998; 1 :271-272. doi: 10.1038/1082
Yosuke Tanaka et al., Targeted Disruption of Mouse Conventional Kinesin Heavy Chain kif5B, Results in Abnormal Perinuclear Clustering of Mitochondria. Cell. 1998; 93 :1147-1158. doi: 10.1016/S0092-8674(00)81459-2
D. Spanswick et al., Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature. 1997; 390 :521-525. doi: 10.1038/37379
M. Ollmann et al., Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein.. Science. 1997; 278 5335 :135-8. doi: 10.1126/SCIENCE.278.5335.135
T. Horvath et al., Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations. Brain Research. 1997; 756 :283-286. doi: 10.1016/S0006-8993(97)00184-4
D. Essig et al., Contractile Activity‐Induced Mitochondrial Biogenesis in Skeletal Muscle. Exercise and Sport Sciences Reviews. 1996; 24 :289–320. doi: 10.1249/00003677-199600240-00012
M. Nangaku et al., KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell. 1994; 79 :1209-1220. doi: 10.1016/0092-8674(94)90012-4
T. Horvath et al., Neuropeptide-Y innervation of beta-endorphin-containing cells in the rat mediobasal hypothalamus: a light and electron microscopic double immunostaining analysis.. Endocrinology. 1992; 131 5 :2461-7. doi: 10.1210/ENDO.131.5.1425443
J. Friedenwald et al., The vascular lesions of diabetic retinopathy.. Bulletin of the Johns Hopkins Hospital. 1950; 86 4 :253-4. doi: 10.1210/ENDO.131.5.1425443
Xin Zhang et al., Involvement of mitochondrial fission in calcium sensing receptor-mediated vascular smooth muscle cells proliferation during hypertension.. Biochemical and biophysical research communications. 2018; 495 1 :454-460. doi: 10.1016/j.bbrc.2017.11.048
Citlaly Gutiérrez-Rodelo et al., [Molecular Mechanisms of Insulin Resistance: An Update].. Gaceta medica de Mexico. 2017; 153 2 :214-228. doi: 10.1016/j.bbrc.2017.11.048
N. Diaz-Morales et al., Are Mitochondrial Fusion and Fission Impaired in Leukocytes of Type 2 Diabetic Patients?. Antioxidants & redox signaling. 2016; 25 2 :108-15. doi: 10.1089/ars.2016.6707
A. Del Campo et al., Mitochondrial fragmentation impairs insulin-dependent glucose uptake by modulating Akt activity through mitochondrial Ca2+ uptake.. American journal of physiology. Endocrinology and metabolism. 2014; 306 1 :E1-E13. doi: 10.1152/ajpendo.00146.2013
Shiny Abhijit et al., Hyperinsulinemia-induced vascular smooth muscle cell (VSMC) migration and proliferation is mediated by converging mechanisms of mitochondrial dysfunction and oxidative stress. Molecular and Cellular Biochemistry. 2012; 373 :95-105. doi: 10.1007/s11010-012-1478-5
J. L. Edwards et al., Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia. 2009; 53 :160-169. doi: 10.1007/s00125-009-1553-y
S. Jäger et al., AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha.. Proceedings of the National Academy of Sciences of the United States of America. 2007; 104 29 :12017-22. doi: 10.1007/s00125-009-1553-y
R. Semple et al., Expression of the thermogenic nuclear hormone receptor coactivator PGC-1α is reduced in the adipose tissue of morbidly obese subjects. International Journal of Obesity. 2004; 28 :176-179. doi: 10.1038/sj.ijo.0802482
Khavin Ib et al., WHO classification of diabetes mellitus. Problemy e̊ndokrinologii. 1984; 30 :36. doi: 10.1038/sj.ijo.0802482
Tin Van Huynh1, 2, Lekha Rethi3, 4, Lekshmi Rethi4, Chih-Hwa Chen3, 5, 6, Yi-Jen Chen7, 8, Yu-Hsun Kao7, 9. The Complex Interplay between Imbalanced Mitochondrial Dynamics and Metabolic Disorders in Type 2 Diabetes. Cells. 2023. 12 (9). doi:10.3390/cells12091223
@Article{Huynh2023TheCI,
DOI = {10.3390/cells12091223}, author = {Tin Van Huynh and Lekha Rethi and L. Rethi and Chih-Hwa Chen and Yi‐Jen Chen and Y. Kao},
booktitle = {Cells},
journal = {Cells},
title = {The Complex Interplay between Imbalanced Mitochondrial Dynamics and Metabolic Disorders in Type 2 Diabetes},
volume = {12},
year = {2023}
}