Support of deep learning to classify vocal fold images in flexible laryngoscopy
Bich Anh Tran, Thao Thi Phuong Dao, Ho Dang Quy Dung, Ngoc Boi Van, Chanh Cong Ha, Nam Hoang Pham, Tu Cong Huyen Ton Nu Cam Nguyen, Tan-Cong Nguyen, Minh-Khoi Pham, Mai-Khiem Tran, Truong Minh Tran, Minh-Triet Tran
Jonathan Reid et al., Development of a machine-learning based voice disorder screening tool. American Journal of Otolaryngology. 2022; :. doi: 10.1016/j.amjoto.2021.103327
Won Ki Cho et al., Diagnostic Accuracies of Laryngeal Diseases Using a Convolutional Neural Network‐Based Image Classification System. The Laryngoscope. 2021; 131 :. doi: 10.1002/lary.29595
Won Ki Cho et al., Comparison of Convolutional Neural Network Models for Determination of Vocal Fold Normality in Laryngoscopic Images.. Journal of voice : official journal of the Voice Foundation. 2020; :. doi: 10.1016/j.jvoice.2020.08.003
F. Parker et al., Machine Learning in Laryngoscopy Analysis: A Proof of Concept Observational Study for the Identification of Post-Extubation Ulcerations and Granulomas. Annals of Otology, Rhinology & Laryngology. 2020; 130 :286 - 291. doi: 10.1177/0003489420950364
Nathaniel Adamian et al., An Open‐Source Computer Vision Tool for Automated Vocal Fold Tracking From Videoendoscopy. The Laryngoscope. 2020; 131 :. doi: 10.1002/lary.28669
Jian-jun Ren et al., Automatic Recognition of Laryngoscopic Images Using a Deep‐Learning Technique. The Laryngoscope. 2020; 130 :. doi: 10.1002/lary.28539
M. Fehling et al., Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network. PLoS ONE. 2020; 15 :. doi: 10.1371/journal.pone.0227791
H. Xiong et al., Computer-aided diagnosis of laryngeal cancer via deep learning based on laryngoscopic images. EBioMedicine. 2019; 48 :92 - 99. doi: 10.1016/j.ebiom.2019.08.075
M. Laves et al., A dataset of laryngeal endoscopic images with comparative study on convolution neural network-based semantic segmentation. International Journal of Computer Assisted Radiology and Surgery. 2018; 14 :483-492. doi: 10.1007/s11548-018-01910-0
M. Sandler et al., MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018; :4510-4520. doi: 10.1109/CVPR.2018.00474
Ramprasaath R. Selvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. International Journal of Computer Vision. 2016; 128 :336-359. doi: 10.1007/s11263-019-01228-7
François Chollet et al., Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016; :1800-1807. doi: 10.1109/CVPR.2017.195
Gao Huang et al., Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016; :2261-2269. doi: 10.1109/CVPR.2017.243
Kaiming He et al., Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015; :770-778. doi: 10.1109/cvpr.2016.90
H. İ. Türkmen et al., Classification of laryngeal disorders based on shape and vascular defects of vocal folds. Computers in biology and medicine. 2015; 62 :76-85. doi: 10.1016/j.compbiomed.2015.02.001
Christian Szegedy et al., Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2014; :1-9. doi: 10.1109/CVPR.2015.7298594
A. Verikas et al., A kernel-based approach to categorizing laryngeal images. Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society. 2007; 31 8 :587-94. doi: 10.1016/J.COMPMEDIMAG.2007.07.003
Antanas Verikas et al., Multiple feature sets based categorization of laryngeal images. Computer methods and programs in biomedicine. 2007; 85 3 :257-66. doi: 10.1016/j.cmpb.2006.11.002
J. Ilgner et al., Colour texture analysis for quantitative laryngoscopy. Acta Oto-Laryngologica. 2003; 123 :730 - 734. doi: 10.1080/00016480310000412
W. Peter et al., The History of Laryngology: A Centennial Celebration. Otolaryngology- Head and Neck Surgery. 1996; 114 :345 - 354. doi: 10.1016/S0194-59989670202-4
Bich Anh Tran, Thao Thi Phuong Dao, Ho Dang Quy Dung, Ngoc Boi Van, Chanh Cong Ha, Nam Hoang Pham, Tu Cong Huyen Ton Nu Cam Nguyen, Tan-Cong Nguyen, Minh-Khoi Pham, Mai-Khiem Tran, Truong Minh Tran, Minh-Triet Tran. Support of deep learning to classify vocal fold images in flexible laryngoscopy. American Journal of Otolaryngology. 2023. 44 (3). doi:10.1016/j.amjoto.2023.103800
@Article{Tran2023SupportOD,
DOI = {10.1016/j.amjoto.2023.103800}, author = {Bich Anh Tran and Thao Thi Phuong Dao and Ho Dang Quy Dung and Ngoc Boi Van and Chanh Cong Ha and Nam Hoang Pham and TuNam Nguyen and Tan-Cong Nguyen and Minh Pham and Mai-Khiem Tran and T. M. Tran and Minh-Triet Tran},
booktitle = {American Journal of Otolaryngology},
journal = {American journal of otolaryngology},
pages = {
103800
},
title = {Support of deep learning to classify vocal fold images in flexible laryngoscopy.},
volume = {44 3},
year = {2023}
}