Search
Close this search box.

Support of deep learning to classify vocal fold images in flexible laryngoscopy

Bich Anh Tran, Thao Thi Phuong Dao, Ho Dang Quy Dung, Ngoc Boi Van, Chanh Cong Ha, Nam Hoang Pham, Tu Cong Huyen Ton Nu Cam Nguyen, Tan-Cong Nguyen, Minh-Khoi Pham, Mai-Khiem Tran, Truong Minh Tran, Minh-Triet Tran
Đã xuất bản: 1 February 2023

Tạp chí: Elsevier BV

ISSN: 0196-0709

Tập: 44

Số xuất bản: 3
Loại nghiên cứu: Nghiên cứu Quốc tế

Tóm Tắt

Tài liệu tham khảo

  1. Jonathan Reid et al., Development of a machine-learning based voice disorder screening tool. American Journal of Otolaryngology. 2022; :. doi: 10.1016/j.amjoto.2021.103327Google Scholar
  2. Won Ki Cho et al., Diagnostic Accuracies of Laryngeal Diseases Using a Convolutional Neural Network‐Based Image Classification System. The Laryngoscope. 2021; 131 :. doi: 10.1002/lary.29595Google Scholar
  3. Won Ki Cho et al., Comparison of Convolutional Neural Network Models for Determination of Vocal Fold Normality in Laryngoscopic Images.. Journal of voice : official journal of the Voice Foundation. 2020; :. doi: 10.1016/j.jvoice.2020.08.003Google Scholar
  4. F. Parker et al., Machine Learning in Laryngoscopy Analysis: A Proof of Concept Observational Study for the Identification of Post-Extubation Ulcerations and Granulomas. Annals of Otology, Rhinology & Laryngology. 2020; 130 :286 - 291. doi: 10.1177/0003489420950364Google Scholar
  5. Nathaniel Adamian et al., An Open‐Source Computer Vision Tool for Automated Vocal Fold Tracking From Videoendoscopy. The Laryngoscope. 2020; 131 :. doi: 10.1002/lary.28669Google Scholar
  6. Jian-jun Ren et al., Automatic Recognition of Laryngoscopic Images Using a Deep‐Learning Technique. The Laryngoscope. 2020; 130 :. doi: 10.1002/lary.28539Google Scholar
  7. M. Fehling et al., Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network. PLoS ONE. 2020; 15 :. doi: 10.1371/journal.pone.0227791Google Scholar
  8. H. Xiong et al., Computer-aided diagnosis of laryngeal cancer via deep learning based on laryngoscopic images. EBioMedicine. 2019; 48 :92 - 99. doi: 10.1016/j.ebiom.2019.08.075Google Scholar
  9. M. Laves et al., A dataset of laryngeal endoscopic images with comparative study on convolution neural network-based semantic segmentation. International Journal of Computer Assisted Radiology and Surgery. 2018; 14 :483-492. doi: 10.1007/s11548-018-01910-0Google Scholar
  10. M. Sandler et al., MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018; :4510-4520. doi: 10.1109/CVPR.2018.00474Google Scholar
  11. Ramprasaath R. Selvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. International Journal of Computer Vision. 2016; 128 :336-359. doi: 10.1007/s11263-019-01228-7Google Scholar
  12. François Chollet et al., Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016; :1800-1807. doi: 10.1109/CVPR.2017.195Google Scholar
  13. Gao Huang et al., Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016; :2261-2269. doi: 10.1109/CVPR.2017.243Google Scholar
  14. Kaiming He et al., Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015; :770-778. doi: 10.1109/cvpr.2016.90Google Scholar
  15. H. İ. Türkmen et al., Classification of laryngeal disorders based on shape and vascular defects of vocal folds. Computers in biology and medicine. 2015; 62 :76-85. doi: 10.1016/j.compbiomed.2015.02.001Google Scholar
  16. Christian Szegedy et al., Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2014; :1-9. doi: 10.1109/CVPR.2015.7298594Google Scholar
  17. A. Verikas et al., A kernel-based approach to categorizing laryngeal images. Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society. 2007; 31 8 :587-94. doi: 10.1016/J.COMPMEDIMAG.2007.07.003Google Scholar
  18. Antanas Verikas et al., Multiple feature sets based categorization of laryngeal images. Computer methods and programs in biomedicine. 2007; 85 3 :257-66. doi: 10.1016/j.cmpb.2006.11.002Google Scholar
  19. J. Ilgner et al., Colour texture analysis for quantitative laryngoscopy. Acta Oto-Laryngologica. 2003; 123 :730 - 734. doi: 10.1080/00016480310000412Google Scholar
  20. W. Peter et al., The History of Laryngology: A Centennial Celebration. Otolaryngology- Head and Neck Surgery. 1996; 114 :345 - 354. doi: 10.1016/S0194-59989670202-4Google Scholar
Đã xuất bản: 1 February 2023
Tạp chí: American Journal of Otolaryngology
Nhà xuất bản: Elsevier BV
ISSN: 0196-0709
Tập: 44
Số xuất bản: 3
Loại nghiên cứu: Nghiên cứu Quốc tế

Trích dẫn bài viết này

Bich Anh Tran, Thao Thi Phuong Dao, Ho Dang Quy Dung, Ngoc Boi Van, Chanh Cong Ha, Nam Hoang Pham, Tu Cong Huyen Ton Nu Cam Nguyen, Tan-Cong Nguyen, Minh-Khoi Pham, Mai-Khiem Tran, Truong Minh Tran, Minh-Triet Tran. Support of deep learning to classify vocal fold images in flexible laryngoscopy. American Journal of Otolaryngology. 2023. 44 (3). doi:10.1016/j.amjoto.2023.103800