Search
Close this search box.

The Complex Interplay between Imbalanced Mitochondrial Dynamics and Metabolic Disorders in Type 2 Diabetes

Tin Van Huynh1, 2, Lekha Rethi3, 4, Lekshmi Rethi4, Chih-Hwa Chen3, 5, 6, Yi-Jen Chen7, 8, Yu-Hsun Kao7, 9
  1. International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
  2. Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City 700000, Vietnam
  3. School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
  4. International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
  5. Department of Orthopedics, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
  6. School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
  7. Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
  8. Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
  9. Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
Đã xuất bản: 23 April 2023

Tạp chí: MDPI AG

ISSN: 2073-4409

Tập: 12

Số xuất bản: 9
Loại nghiên cứu: Nghiên cứu Quốc tế

Tóm Tắt

Type 2 diabetes mellitus (T2DM) is a global burden, with an increasing number of people affected and increasing treatment costs. The advances in research and guidelines improve the management of blood glucose and related diseases, but T2DM and its complications are still a big challenge in clinical practice. T2DM is a metabolic disorder in which insulin signaling is impaired from reaching its effectors. Mitochondria are the “powerhouses” that not only generate the energy as adenosine triphosphate (ATP) using pyruvate supplied from glucose, free fatty acid (FFA), and amino acids (AA) but also regulate multiple cellular processes such as calcium homeostasis, redox balance, and apoptosis. Mitochondrial dysfunction leads to various diseases, including cardiovascular diseases, metabolic disorders, and cancer. The mitochondria are highly dynamic in adjusting their functions according to cellular conditions. The shape, morphology, distribution, and number of mitochondria reflect their function through various processes, collectively known as mitochondrial dynamics, including mitochondrial fusion, fission, biogenesis, transport, and mitophagy. These processes determine the overall mitochondrial health and vitality. More evidence supports the idea that dysregulated mitochondrial dynamics play essential roles in the pathophysiology of insulin resistance, obesity, and T2DM, as well as imbalanced mitochondrial dynamics found in T2DM. This review updates and discusses mitochondrial dynamics and the complex interactions between it and metabolic disorders.

Tài liệu tham khảo

  1. Mary Oluwadamilola Haastrup et al., The Journey of Mitochondrial Protein Import and the Roadmap to Follow. International Journal of Molecular Sciences. 2023; 24 :. doi: 10.3390/ijms24032479Google Scholar
  2. Himaja Pegadraju et al., Mechanistic and therapeutic role of Drp1 in the pathogenesis of stroke.. Gene. 2022; 855 :147130. doi: 10.1016/j.gene.2022.147130Google Scholar
  3. Min Chen et al., Inhibition of diabetes-induced Drp1 deSUMOylation prevents retinal vascular lesions associated with diabetic retinopathy.. Experimental eye research. 2022; :109334. doi: 10.1016/j.exer.2022.109334Google Scholar
  4. Meng‐Yuan Zhang et al., Inhibition of Drp1 ameliorates diabetic retinopathy by regulating mitochondrial homeostasis.. Experimental eye research. 2022; :109095. doi: 10.1016/j.exer.2022.109095Google Scholar
  5. Dehui Liu et al., Downregulation of Uncoupling Protein 2(UCP2) Mediated by MicroRNA-762 Confers Cardioprotection and Participates in the Regulation of Dynamic Mitochondrial Homeostasis of Dynamin Related Protein1 (DRP1) After Myocardial Infarction in Mice. Frontiers in Cardiovascular Medicine. 2022; 8 :. doi: 10.3389/fcvm.2021.764064Google Scholar
  6. Jun‐Ha Hwang et al., TAZ links exercise to mitochondrial biogenesis via mitochondrial transcription factor A. Nature Communications. 2022; 13 :. doi: 10.1038/s41467-022-28247-2Google Scholar
  7. Jie Ding et al., Mdivi-1 alleviates cardiac fibrosis post myocardial infarction at infarcted border zone, possibly via inhibition of Drp1-Activated mitochondrial fission and oxidative stress.. Archives of biochemistry and biophysics. 2022; :109147. doi: 10.1016/j.abb.2022.109147Google Scholar
  8. Karla E. Merz et al., Enrichment of the exocytosis protein STX4 in skeletal muscle remediates peripheral insulin resistance and alters mitochondrial dynamics via Drp1. Nature Communications. 2022; 13 :. doi: 10.1038/s41467-022-28061-wGoogle Scholar
  9. Meng‐Yuan Zhang et al., TGR5 Activation Ameliorates Mitochondrial Homeostasis via Regulating the PKCδ/Drp1-HK2 Signaling in Diabetic Retinopathy. Frontiers in Cell and Developmental Biology. 2022; 9 :. doi: 10.3389/fcell.2021.759421Google Scholar
  10. Qi Wu et al., Mangiferin Inhibits PDGF-BB-Induced Proliferation and Migration of Rat Vascular Smooth Muscle Cells and Alleviates Neointimal Formation in Mice through the AMPK/Drp1 Axis. Oxidative Medicine and Cellular Longevity. 2021; 2021 :. doi: 10.1155/2021/3119953Google Scholar
  11. P. Finocchietto et al., Inhibition of Mitochondrial Fission by Drp-1 Blockade by Short-Term Leptin and Mdivi-1 Treatment Improves White Adipose Tissue Abnormalities in Obesity and Diabetes. Pharmacological Research. 2021; :. doi: 10.1016/j.phrs.2021.106028Google Scholar
  12. Qian Wu et al., Ligustilide attenuates ischemic stroke injury by promoting Drp1-mediated mitochondrial fission via activation of AMPK. Phytomedicine. 2021; :. doi: 10.1016/j.phymed.2021.153884Google Scholar
  13. Paulo H C Mesquita et al., Skeletal Muscle Ribosome and Mitochondrial Biogenesis in Response to Different Exercise Training Modalities. Frontiers in Physiology. 2021; 12 :. doi: 10.3389/fphys.2021.725866Google Scholar
  14. Xie-sheng Chen et al., Anti-hyperlipidemic, Anti-inflammatory, and Ameliorative Effects of DRP1 Inhibition in Rats with Experimentally Induced Myocardial Infarction. Cardiovascular Toxicology. 2021; 21 :1000 - 1011. doi: 10.1007/s12012-021-09691-wGoogle Scholar
  15. Yoomi Chun et al., AMPK–mTOR Signaling and Cellular Adaptations in Hypoxia. International Journal of Molecular Sciences. 2021; 22 :. doi: 10.3390/ijms22189765Google Scholar
  16. Miriam Valera-Alberni et al., Crosstalk between Drp1 phosphorylation sites during mitochondrial remodeling and their impact on metabolic adaptation. Cell Reports. 2021; 36 :. doi: 10.1016/j.celrep.2021.109565Google Scholar
  17. Rui-jun Ning et al., The mitochondria-targeted antioxidant MitoQ attenuated PM2.5-induced vascular fibrosis via regulating mitophagy. Redox Biology. 2021; 46 :. doi: 10.1016/j.redox.2021.102113Google Scholar
  18. A. Gómez-Valadés et al., Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis. Cell Metabolism. 2021; 33 :1820 - 1835.e9. doi: 10.1016/j.cmet.2021.07.008Google Scholar
  19. Wei Zhou et al., Dexmedetomidine maintains blood-brain barrier integrity by inhibiting Drp1-related endothelial mitochondrial dysfunction in ischemic stroke.. Acta biochimica et biophysica Sinica. 2021; :. doi: 10.1093/abbs/gmab092Google Scholar
  20. Zhiwei Zhang et al., Pioglitazone Inhibits Diabetes-Induced Atrial Mitochondrial Oxidative Stress and Improves Mitochondrial Biogenesis, Dynamics, and Function Through the PPAR-γ/PGC-1α Signaling Pathway. Frontiers in Pharmacology. 2021; 12 :. doi: 10.3389/fphar.2021.658362Google Scholar
  21. M. Marraudino et al., Hypothalamic Expression of Neuropeptide Y (NPY) and Pro-OpioMelanoCortin (POMC) in Adult Male Mice Is Affected by Chronic Exposure to Endocrine Disruptors. Metabolites. 2021; 11 :. doi: 10.3390/metabo11060368Google Scholar
  22. Dongjoon Kim et al., Reduced Levels of Drp1 Protect against Development of Retinal Vascular Lesions in Diabetic Retinopathy. Cells. 2021; 10 :. doi: 10.3390/cells10061379Google Scholar
  23. M. Adebayo et al., Mitochondrial fusion and fission: The fine‐tune balance for cellular homeostasis. The FASEB Journal. 2021; 35 :. doi: 10.1096/fj.202100067RGoogle Scholar
  24. Guangfeng Geng et al., Receptor-mediated mitophagy regulates EPO production and protects against renal anemia. eLife. 2021; 10 :. doi: 10.7554/eLife.64480Google Scholar
  25. Xiang-qing Xu et al., LncRNA NEAT1 accelerates renal tubular epithelial cell damage by modulating mitophagy via miR‐150‐5p–DRP1 axis in diabetic nephropathy. Experimental Physiology. 2021; 106 :1631 - 1642. doi: 10.1113/EP089547Google Scholar
  26. S. Dewanjee et al., The Emerging Role of HDACs: Pathology and Therapeutic Targets in Diabetes Mellitus. Cells. 2021; 10 :. doi: 10.3390/cells10061340Google Scholar
  27. Morgane Pengam et al., How do exercise training variables stimulate processes related to mitochondrial biogenesis in slow and fast trout muscle fibres?. Experimental Physiology. 2021; 106 :938 - 957. doi: 10.1113/EP089231Google Scholar
  28. I. González-García et al., Divide et impera: How mitochondrial fission in astrocytes rules obesity. Molecular Metabolism. 2021; 45 :. doi: 10.1016/j.molmet.2020.101159Google Scholar
  29. Feng He et al., Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. The Journal of Experimental Medicine. 2020; 218 :. doi: 10.1084/jem.20201416Google Scholar
  30. K. Song et al., Increased Insulin Sensitivity by High-Altitude Hypoxia in Mice with High-Fat Diet-Induced Obesity Is Associated with Activated AMPK Signaling and Subsequently Enhanced Mitochondrial Biogenesis in Skeletal Muscles. Obesity Facts. 2020; 13 :455 - 472. doi: 10.1159/000508112Google Scholar
  31. Zhen-peng Zuo et al., Mechanisms and Functions of Mitophagy and Potential Roles in Renal Disease. Frontiers in Physiology. 2020; 11 :. doi: 10.3389/fphys.2020.00935Google Scholar
  32. Yen-Hsiang Chang et al., The Causal Role of Mitochondrial Dynamics in Regulating Innate Immunity in Diabetes. Frontiers in Endocrinology. 2020; 11 :. doi: 10.3389/fendo.2020.00445Google Scholar
  33. B. Patel et al., Inhibition of mitochondrial fission and iNOS in the dorsal vagal complex protects from overeating and weight gain. Molecular Metabolism. 2020; 43 :. doi: 10.1016/j.molmet.2020.101123Google Scholar
  34. K. Ma et al., Mitophagy, Mitochondrial Homeostasis, and Cell Fate. Frontiers in Cell and Developmental Biology. 2020; 8 :. doi: 10.3389/fcell.2020.00467Google Scholar
  35. F. Dengler et al., Activation of AMPK under Hypoxia: Many Roads Leading to Rome. International Journal of Molecular Sciences. 2020; 21 :. doi: 10.3390/ijms21072428Google Scholar
  36. Shan Lu et al., Hyperglycemia Acutely Increases Cytosolic Reactive Oxygen Species via O-linked GlcNAcylation and CaMKII Activation in Mouse Ventricular Myocytes. . 2020; 126 :e80 - e96. doi: 10.1161/CIRCRESAHA.119.316288Google Scholar
  37. D. Chan et al., Mitochondrial Dynamics and Its Involvement in Disease.. Annual review of pathology. 2020; :. doi: 10.1146/annurev-pathmechdis-012419-032711Google Scholar
  38. M. Méquinion et al., The Ghrelin-AgRP Neuron Nexus in Anorexia Nervosa: Implications for Metabolic and Behavioral Adaptations. Frontiers in Nutrition. 2020; 6 :. doi: 10.3389/fnut.2019.00190Google Scholar
  39. Rong Yu et al., The phosphorylation status of Ser-637 in dynamin-related protein 1 (Drp1) does not determine Drp1 recruitment to mitochondria. The Journal of Biological Chemistry. 2019; 294 :17262 - 17277. doi: 10.1074/jbc.RA119.008202Google Scholar
  40. W. Dai et al., Dysregulated Mitochondrial Dynamics and Metabolism in Obesity, Diabetes, and Cancer. Frontiers in Endocrinology. 2019; 10 :. doi: 10.3389/fendo.2019.00570Google Scholar
  41. Lei Gao et al., H2 relaxin ameliorates angiotensin II-induced endothelial dysfunction through inhibition of excessive mitochondrial fission.. Biochemical and biophysical research communications. 2019; 512 4 :799-805. doi: 10.1016/j.bbrc.2019.03.112Google Scholar
  42. Jing Yang et al., HDAC inhibition induces autophagy and mitochondrial biogenesis to maintain mitochondrial homeostasis during cardiac ischemia/reperfusion injury.. Journal of molecular and cellular cardiology. 2019; 130 :36-48. doi: 10.1016/j.yjmcc.2019.03.008Google Scholar
  43. Rong Yu et al., Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery. The EMBO Journal. 2019; 38 :. doi: 10.15252/embj.201899748Google Scholar
  44. Yi Ren et al., Critical role of AMPK in redox regulation under glucose starvation. Redox Biology. 2019; 25 :. doi: 10.1016/j.redox.2019.101154Google Scholar
  45. S. Kamerkar et al., Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nature Communications. 2018; 9 :. doi: 10.1038/s41467-018-07543-wGoogle Scholar
  46. Hung-Yu Lin et al., The Causal Role of Mitochondrial Dynamics in Regulating Insulin Resistance in Diabetes: Link through Mitochondrial Reactive Oxygen Species. Oxidative Medicine and Cellular Longevity. 2018; 2018 :. doi: 10.1155/2018/7514383Google Scholar
  47. Ping Wei et al., RNF34 modulates the mitochondrial biogenesis and exercise capacity in muscle and lipid metabolism through ubiquitination of PGC-1 in Drosophila. Acta Biochimica et Biophysica Sinica. 2018; 50 :1038–1046. doi: 10.1093/abbs/gmy106Google Scholar
  48. Sungho Jin et al., Mitochondrial Dynamics and Hypothalamic Regulation of Metabolism.. Endocrinology. 2018; 159 10 :3596-3604. doi: 10.1210/en.2018-00667Google Scholar
  49. Guifeng Xu et al., Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: population based study. The BMJ. 2018; 362 :. doi: 10.1136/bmj.k1497Google Scholar
  50. Tanila Wood Dos Santos et al., Effects of Polyphenols on Thermogenesis and Mitochondrial Biogenesis. International Journal of Molecular Sciences. 2018; 19 :. doi: 10.3390/ijms19092757Google Scholar
  51. K. Palikaras et al., Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nature Cell Biology. 2018; 20 :1013-1022. doi: 10.1038/s41556-018-0176-2Google Scholar
  52. Kuang‐Hueih Chen et al., Epigenetic Dysregulation of the Dynamin-Related Protein 1 Binding Partners MiD49 and MiD51 Increases Mitotic Mitochondrial Fission and Promotes Pulmonary Arterial Hypertension: Mechanistic and Therapeutic Implications. Circulation. 2018; 138 :287–304. doi: 10.1161/CIRCULATIONAHA.117.031258Google Scholar
  53. Ilias Gkikas et al., The Role of Mitophagy in Innate Immunity. Frontiers in Immunology. 2018; 9 :. doi: 10.3389/fimmu.2018.01283Google Scholar
  54. K. Bullard et al., Prevalence of Diagnosed Diabetes in Adults by Diabetes Type — United States, 2016. Morbidity and Mortality Weekly Report. 2018; 67 :359 - 361. doi: 10.15585/mmwr.mm6712a2Google Scholar
  55. Meng-jie Huang et al., The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission. Redox Biology. 2018; 16 :303 - 313. doi: 10.1016/j.redox.2018.03.010Google Scholar
  56. Sarah R Pickles et al., Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Current Biology. 2018; 28 :R170-R185. doi: 10.1016/j.cub.2018.01.004Google Scholar
  57. C. M. O. Volpe et al., Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death & Disease. 2018; 9 :. doi: 10.1038/s41419-017-0135-zGoogle Scholar
  58. Shiori Sekine et al., PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biology. 2018; 16 :. doi: 10.1186/s12915-017-0470-7Google Scholar
  59. Tomoki Bo et al., Calmodulin-dependent protein kinase II (CaMKII) mediates radiation-induced mitochondrial fission by regulating the phosphorylation of dynamin-related protein 1 (Drp1) at serine 616.. Biochemical and biophysical research communications. 2018; 495 2 :1601-1607. doi: 10.1016/j.bbrc.2017.12.012Google Scholar
  60. Y. Xu et al., YiQiFuMai Powder Injection Protects against Ischemic Stroke via Inhibiting Neuronal Apoptosis and PKCδ/Drp1-Mediated Excessive Mitochondrial Fission. Oxidative Medicine and Cellular Longevity. 2017; 2017 :. doi: 10.1155/2017/1832093Google Scholar
  61. G. Dodd et al., Insulin action in the brain: Roles in energy and glucose homeostasis. Journal of Neuroendocrinology. 2017; 29 :. doi: 10.1111/jne.12513Google Scholar
  62. P. A. Li et al., Mitochondrial biogenesis in neurodegeneration. Journal of Neuroscience Research. 2017; 95 :. doi: 10.1002/jnr.24042Google Scholar
  63. Shaorui Chen et al., Ghrelin receptors mediate ghrelin‐induced excitation of agouti‐related protein/neuropeptide Y but not pro‐opiomelanocortin neurons. Journal of Neurochemistry. 2017; 142 :. doi: 10.1111/jnc.14080Google Scholar
  64. Bobo Zhang et al., d-Chiro inositol ameliorates endothelial dysfunction via inhibition of oxidative stress and mitochondrial fission.. Molecular nutrition & food research. 2017; 61 8 :. doi: 10.1002/mnfr.201600710Google Scholar
  65. S. Srinivasan et al., Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection.. Biochimica et biophysica acta. Bioenergetics. 2017; 1858 8 :602-614. doi: 10.1016/j.bbabio.2017.01.004Google Scholar
  66. M. Rogers et al., Dynamin-Related Protein 1 Inhibition Attenuates Cardiovascular Calcification in the Presence of Oxidative Stress. Circulation Research. 2017; 121 :220–233. doi: 10.1161/CIRCRESAHA.116.310293Google Scholar
  67. Hsiuchen Chen et al., Mitochondrial Dynamics in Regulating the Unique Phenotypes of Cancer and Stem Cells.. Cell metabolism. 2017; 26 1 :39-48. doi: 10.1016/j.cmet.2017.05.016Google Scholar
  68. Sara Ramírez et al., Mitochondrial Dynamics Mediated by Mitofusin 1 Is Required for POMC Neuron Glucose-Sensing and Insulin Release Control.. Cell metabolism. 2017; 25 6 :1390-1399.e6. doi: 10.1016/j.cmet.2017.05.010Google Scholar
  69. K. Timper et al., Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Disease Models & Mechanisms. 2017; 10 :679 - 689. doi: 10.1242/dmm.026609Google Scholar
  70. Xinyu Zhuang et al., Salidroside inhibits high-glucose induced proliferation of vascular smooth muscle cells via inhibiting mitochondrial fission and oxidative stress. Experimental and Therapeutic Medicine. 2017; 14 :515 - 524. doi: 10.3892/etm.2017.4541Google Scholar
  71. B. M. Filippi et al., Dynamin-Related Protein 1-Dependent Mitochondrial Fission Changes in the Dorsal Vagal Complex Regulate Insulin Action.. Cell reports. 2017; 18 10 :2301-2309. doi: 10.1016/j.celrep.2017.02.035Google Scholar
  72. A. Santoro et al., DRP1 Suppresses Leptin and Glucose Sensing of POMC Neurons.. Cell metabolism. 2017; 25 3 :647-660. doi: 10.1016/j.cmet.2017.01.003Google Scholar
  73. V. Lahera et al., Role of Mitochondrial Dysfunction in Hypertension and Obesity. Current Hypertension Reports. 2017; 19 :1-9. doi: 10.1007/s11906-017-0710-9Google Scholar
  74. Mingge Ding et al., Inhibition of dynamin-related protein 1 protects against myocardial ischemia–reperfusion injury in diabetic mice. Cardiovascular Diabetology. 2017; 16 :. doi: 10.1186/s12933-017-0501-2Google Scholar
  75. Traci L. Marin et al., AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Science Signaling. 2017; 10 :. doi: 10.1126/scisignal.aaf7478Google Scholar
  76. S. Rovira-Llopis et al., Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biology. 2017; 11 :637 - 645. doi: 10.1016/j.redox.2017.01.013Google Scholar
  77. J. M. Suárez-Rivero et al., Mitochondrial Dynamics in Mitochondrial Diseases. Diseases. 2016; 5 :. doi: 10.3390/diseases5010001Google Scholar
  78. P. Newsholme et al., Molecular mechanisms of ROS production and oxidative stress in diabetes.. The Biochemical journal. 2016; 473 24 :4527-4550. doi: 10.1042/BCJ20160503CGoogle Scholar
  79. Sorabh Sharma et al., Histone deacetylase inhibitors: Future therapeutics for insulin resistance and type 2 diabetes.. Pharmacological research. 2016; 113 Pt A :320-326. doi: 10.1016/j.phrs.2016.09.009Google Scholar
  80. Qilong Wang et al., Metformin Suppresses Diabetes-Accelerated Atherosclerosis via the Inhibition of Drp1-Mediated Mitochondrial Fission. Diabetes. 2016; 66 :193 - 205. doi: 10.2337/db16-0915Google Scholar
  81. Sejal Vyas et al., Mitochondria and Cancer. Cell. 2016; 166 :555-566. doi: 10.1016/j.cell.2016.07.002Google Scholar
  82. Diaz-MoralesNoelia et al., Are Mitochondrial Fusion and Fission Impaired in Leukocytes of Type 2 Diabetic Patients. Antioxidants & Redox Signaling. 2016; 25 :108-115. doi: 10.1089/ARS.2016.6707Google Scholar
  83. Yi Li et al., Inhibition of Mitochondrial Fission and NOX2 Expression Prevent NLRP3 Inflammasome Activation in the Endothelium: The Role of Corosolic Acid Action in the Amelioration of Endothelial Dysfunction.. Antioxidants & redox signaling. 2016; 24 16 :893-908. doi: 10.1089/ars.2015.6479Google Scholar
  84. C. Toda et al., UCP2 Regulates Mitochondrial Fission and Ventromedial Nucleus Control of Glucose Responsiveness. Cell. 2016; 164 :872-883. doi: 10.1016/j.cell.2016.02.010Google Scholar
  85. César Vásquez-Trincado et al., Mitochondrial dynamics, mitophagy and cardiovascular disease. The Journal of Physiology. 2016; 594 :. doi: 10.1113/JP271301Google Scholar
  86. N. Pavlova et al., The Emerging Hallmarks of Cancer Metabolism.. Cell metabolism. 2016; 23 1 :27-47. doi: 10.1016/j.cmet.2015.12.006Google Scholar
  87. R. Whitaker et al., Mitochondrial Biogenesis as a Pharmacological Target: A New Approach to Acute and Chronic Diseases.. Annual review of pharmacology and toxicology. 2016; 56 :229-49. doi: 10.1146/annurev-pharmtox-010715-103155Google Scholar
  88. J. Archibald et al., Endosymbiosis and Eukaryotic Cell Evolution. Current Biology. 2015; 25 :R911-R921. doi: 10.1016/j.cub.2015.07.055Google Scholar
  89. R. Lightowlers et al., Mutations causing mitochondrial disease: What is new and what challenges remain?. Science. 2015; 349 :1494 - 1499. doi: 10.1126/science.aac7516Google Scholar
  90. Jia Li et al., Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction.. Journal of molecular and cellular cardiology. 2015; 86 :62-74. doi: 10.1016/j.yjmcc.2015.07.010Google Scholar
  91. Lixiang Wang et al., Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration. Diabetologia. 2015; 58 :2371-2380. doi: 10.1007/s00125-015-3704-7Google Scholar
  92. G. Civiletto et al., Opa1 Overexpression Ameliorates the Phenotype of Two Mitochondrial Disease Mouse Models. Cell Metabolism. 2015; 21 :845 - 854. doi: 10.1016/j.cmet.2015.04.016Google Scholar
  93. S. Heinonen et al., Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity. Diabetes. 2015; 64 :3135 - 3145. doi: 10.2337/db14-1937Google Scholar
  94. Hao Wu et al., Hypoxia activation of mitophagy and its role in disease pathogenesis.. Antioxidants & redox signaling. 2015; 22 12 :1032-46. doi: 10.1089/ars.2014.6204Google Scholar
  95. Huifang Wei et al., Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses.. Biochimica et biophysica acta. 2015; 1853 10 Pt B :2784-90. doi: 10.1016/j.bbamcr.2015.03.013Google Scholar
  96. G. Dodd et al., Leptin and Insulin Act on POMC Neurons to Promote the Browning of White Fat. Cell. 2015; 160 :88-104. doi: 10.1016/j.cell.2014.12.022Google Scholar
  97. V. Carelli et al., Mitochondrial DNA: Impacting Central and Peripheral Nervous Systems. Neuron. 2014; 84 :1126-1142. doi: 10.1016/j.neuron.2014.11.022Google Scholar
  98. K. Marcinko et al., The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise. Experimental Physiology. 2014; 99 :. doi: 10.1113/expphysiol.2014.082255Google Scholar
  99. M. Montgomery et al., Mitochondrial dysfunction and insulin resistance: an update. Endocrine Connections. 2014; 4 :R1 - R15. doi: 10.1530/EC-14-0092Google Scholar
  100. Carole M. Nasrallah et al., Mitochondrial dynamics in the central regulation of metabolism. Nature Reviews Endocrinology. 2014; 10 :650-658. doi: 10.1038/nrendo.2014.160Google Scholar
  101. K. Labbé et al., Determinants and functions of mitochondrial behavior.. Annual review of cell and developmental biology. 2014; 30 :357-91. doi: 10.1146/annurev-cellbio-101011-155756Google Scholar
  102. F. Sanchis-Gomar et al., Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches.. Current pharmaceutical design. 2014; 20 35 :5619-33. doi: 10.2174/1381612820666140306095106Google Scholar
  103. T. Valero et al., Mitochondrial biogenesis: pharmacological approaches.. Current pharmaceutical design. 2014; 20 35 :5507-9. doi: 10.2174/138161282035140911142118Google Scholar
  104. Prashant Mishra et al., Mitochondrial dynamics and inheritance during cell division, development and disease. Nature Reviews Molecular Cell Biology. 2014; 15 :634-646. doi: 10.1038/nrm3877Google Scholar
  105. Min Zhu et al., Histone Decacetylase Inhibitors Prevent Mitochondrial Fragmentation and Elicit Early Neuroprotection against MPP+. CNS Neuroscience & Therapeutics. 2014; 20 :. doi: 10.1111/cns.12217Google Scholar
  106. S. Archer et al., Mitochondrial dynamics--mitochondrial fission and fusion in human diseases.. The New England journal of medicine. 2013; 369 23 :2236-51. doi: 10.1056/NEJMra1215233Google Scholar
  107. M. Morita et al., mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation.. Cell metabolism. 2013; 18 5 :698-711. doi: 10.1016/j.cmet.2013.10.001Google Scholar
  108. Marc Schneeberger et al., Mitofusin 2 in POMC Neurons Connects ER Stress with Leptin Resistance and Energy Imbalance. Cell. 2013; 155 :172-187. doi: 10.1016/j.cell.2013.09.003Google Scholar
  109. M. Dietrich et al., Mitochondrial Dynamics Controlled by Mitofusins Regulate Agrp Neuronal Activity and Diet-Induced Obesity. Cell. 2013; 155 :188-199. doi: 10.1016/j.cell.2013.09.004Google Scholar
  110. B. Edgett et al., Dissociation of Increases in PGC-1α and Its Regulators from Exercise Intensity and Muscle Activation Following Acute Exercise. PLoS ONE. 2013; 8 :. doi: 10.1371/journal.pone.0071623Google Scholar
  111. D. Serra et al., Mitochondrial fatty acid oxidation in obesity.. Antioxidants & redox signaling. 2013; 19 3 :269-84. doi: 10.1089/ars.2012.4875Google Scholar
  112. Kai Mao et al., The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy.. Developmental cell. 2013; 26 1 :9-18. doi: 10.1016/j.devcel.2013.05.024Google Scholar
  113. M. Komatsu et al., Glucose‐stimulated insulin secretion: A newer perspective. Journal of Diabetes Investigation. 2013; 4 :511 - 516. doi: 10.1111/jdi.12094Google Scholar
  114. M. Liesa et al., Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure.. Cell metabolism. 2013; 17 4 :491-506. doi: 10.1016/j.cmet.2013.03.002Google Scholar
  115. O. Loson et al., Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Molecular Biology of the Cell. 2013; 24 :659 - 667. doi: 10.1091/mbc.E12-10-0721Google Scholar
  116. L. Varela et al., Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO reports. 2012; 13 :. doi: 10.1038/embor.2012.174Google Scholar
  117. C. Bruce et al., Overexpression of Sphingosine Kinase 1 Prevents Ceramide Accumulation and Ameliorates Muscle Insulin Resistance in High-Fat Diet–Fed Mice. Diabetes. 2012; 61 :3148 - 3155. doi: 10.2337/db12-0029Google Scholar
  118. Scott B Vafai et al., Mitochondrial disorders as windows into an ancient organelle. Nature. 2012; 491 :374-383. doi: 10.1038/nature11707Google Scholar
  119. Liang Peng et al., Involvement of Dynamin-Related Protein 1 in Free Fatty Acid-Induced INS-1-Derived Cell Apoptosis. PLoS ONE. 2012; 7 :. doi: 10.1371/journal.pone.0049258Google Scholar
  120. D. Chan et al., Fusion and fission: interlinked processes critical for mitochondrial health.. Annual review of genetics. 2012; 46 :265-87. doi: 10.1146/annurev-genet-110410-132529Google Scholar
  121. B. Westermann et al., Bioenergetic role of mitochondrial fusion and fission.. Biochimica et biophysica acta. 2012; 1817 10 :1833-8. doi: 10.1016/j.bbabio.2012.02.033Google Scholar
  122. D. Wallace et al., Mitochondria and cancer. Nature Reviews Cancer. 2012; 12 :685-698. doi: 10.1038/nrc3365Google Scholar
  123. R. Scarpulla et al., Transcriptional integration of mitochondrial biogenesis. Trends in Endocrinology & Metabolism. 2012; 23 :459-466. doi: 10.1016/j.tem.2012.06.006Google Scholar
  124. C. Kusminski et al., Mitochondrial dysfunction in white adipose tissue. Trends in Endocrinology & Metabolism. 2012; 23 :435-443. doi: 10.1016/j.tem.2012.06.004Google Scholar
  125. R. Youle et al., Mitochondrial Fission, Fusion, and Stress. Science. 2012; 337 :1062 - 1065. doi: 10.1126/science.1219855Google Scholar
  126. Jee Suk Lee et al., Histone deacetylase inhibitors induce mitochondrial elongation. Journal of Cellular Physiology. 2012; 227 :. doi: 10.1002/jcp.23027Google Scholar
  127. O. Larsson et al., Distinct perturbation of the translatome by the antidiabetic drug metformin. Proceedings of the National Academy of Sciences. 2012; 109 :8977 - 8982. doi: 10.1073/pnas.1201689109Google Scholar
  128. Nathan L. Price et al., SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function.. Cell metabolism. 2012; 15 5 :675-90. doi: 10.1016/j.cmet.2012.04.003Google Scholar
  129. Pedro M. Quirós et al., Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. The EMBO Journal. 2012; 31 :. doi: 10.1038/emboj.2012.70Google Scholar
  130. D. Hardie et al., AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology. 2012; 13 :251-262. doi: 10.1038/nrm3311Google Scholar
  131. David Sebastián et al., Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proceedings of the National Academy of Sciences. 2012; 109 :5523 - 5528. doi: 10.1073/pnas.1108220109Google Scholar
  132. Lloye M. Dillon et al., The role of PGC‐1 coactivators in aging skeletal muscle and heart. IUBMB Life. 2012; 64 :. doi: 10.1002/iub.608Google Scholar
  133. Wenjian Wang et al., Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells.. Cell metabolism. 2012; 15 2 :186-200. doi: 10.1016/j.cmet.2012.01.009Google Scholar
  134. Huei-Fen Jheng et al., Mitochondrial Fission Contributes to Mitochondrial Dysfunction and Insulin Resistance in Skeletal Muscle. Molecular and Cellular Biology. 2011; 32 :309 - 319. doi: 10.1128/MCB.05603-11Google Scholar
  135. Qing Zhong et al., Diabetic retinopathy and damage to mitochondrial structure and transport machinery.. Investigative ophthalmology & visual science. 2011; 52 12 :8739-46. doi: 10.1167/iovs.11-8045Google Scholar
  136. Yunlei Yang et al., Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop. Cell. 2011; 146 :992-1003. doi: 10.1016/j.cell.2011.07.039Google Scholar
  137. M. Mihaylova et al., The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology. 2011; 13 :1016-1023. doi: 10.1038/ncb2329Google Scholar
  138. S. Noeman et al., Biochemical Study of Oxidative Stress Markers in the Liver, Kidney and Heart of High Fat Diet Induced Obesity in Rats. Diabetology & Metabolic Syndrome. 2011; 3 :17 - 17. doi: 10.1186/1758-5996-3-17Google Scholar
  139. Sherene M. Shenouda et al., Altered Mitochondrial Dynamics Contributes to Endothelial Dysfunction in Diabetes Mellitus. Circulation. 2011; 124 :444–453. doi: 10.1161/CIRCULATIONAHA.110.014506Google Scholar
  140. Linh Vong et al., Leptin Action on GABAergic Neurons Prevents Obesity and Reduces Inhibitory Tone to POMC Neurons. Neuron. 2011; 71 :142-154. doi: 10.1016/j.neuron.2011.05.028Google Scholar
  141. D. Hood et al., Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle: implications for health and disease.. Comprehensive Physiology. 2011; 1 3 :1119-34. doi: 10.1002/cphy.c100074Google Scholar
  142. G. Semenza et al., Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning.. Biochimica et biophysica acta. 2011; 1813 7 :1263-8. doi: 10.1016/j.bbamcr.2010.08.006Google Scholar
  143. David F. Kashatus et al., RalA and RalBP1 regulate mitochondrial fission at mitosis. Nature cell biology. 2011; 13 :1108 - 1115. doi: 10.1038/ncb2310Google Scholar
  144. M. Brand et al., Assessing mitochondrial dysfunction in cells. Biochemical Journal. 2011; 437 :575 - 575. doi: 10.1042/BJ20110162Google Scholar
  145. J. Holloszy et al., Regulation of mitochondrial biogenesis and GLUT4 expression by exercise.. Comprehensive Physiology. 2011; 1 2 :921-40. doi: 10.1002/cphy.c100052Google Scholar
  146. P. Fernandez-Marcos et al., Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis.. The American journal of clinical nutrition. 2011; 93 4 :884S-90. doi: 10.3945/ajcn.110.001917Google Scholar
  147. S. Diano et al., New aspects of melanocortin signaling: A role for PRCP in α-MSH degradation. Frontiers in Neuroendocrinology. 2011; 32 :70-83. doi: 10.1016/j.yfrne.2010.09.001Google Scholar
  148. D. P. Christensen et al., Histone Deacetylase (HDAC) Inhibition as a Novel Treatment for Diabetes Mellitus. Molecular Medicine. 2011; 17 :378-390. doi: 10.2119/molmed.2011.00021Google Scholar
  149. B. Westermann et al., Mitochondrial fusion and fission in cell life and death. Nature Reviews Molecular Cell Biology. 2010; 11 :872-884. doi: 10.1038/nrm3013Google Scholar
  150. Juston Weems et al., Class II Histone Deacetylases Limit GLUT4 Gene Expression during Adipocyte Differentiation*. The Journal of Biological Chemistry. 2010; 286 :460 - 468. doi: 10.1074/jbc.M110.157107Google Scholar
  151. Ferdinando Giacco et al., Oxidative stress and diabetic complications.. Circulation research. 2010; 107 9 :1058-70. doi: 10.1161/CIRCRESAHA.110.223545Google Scholar
  152. Chuang-Rung Chang et al., Dynamic regulation of mitochondrial fission through modification of the dynamin‐related protein Drp1. Annals of the New York Academy of Sciences. 2010; 1201 :. doi: 10.1111/j.1749-6632.2010.05629.xGoogle Scholar
  153. V. Samuel et al., Lipid-induced insulin resistance: unravelling the mechanism. The Lancet. 2010; 375 :2267-2277. doi: 10.1016/S0140-6736(10)60408-4Google Scholar
  154. B. Egan et al., Exercise intensity‐dependent regulation of peroxisome proliferator‐activated receptor γ coactivator‐1α mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. The Journal of Physiology. 2010; 588 :. doi: 10.1113/jphysiol.2010.188011Google Scholar
  155. M. Iwabu et al., Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature. 2010; 464 :1313-1319. doi: 10.1038/nature08991Google Scholar
  156. P. Schrauwen et al., Mitochondrial dysfunction and lipotoxicity.. Biochimica et biophysica acta. 2010; 1801 3 :266-71. doi: 10.1016/j.bbalip.2009.09.011Google Scholar
  157. T. Wenz et al., Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proceedings of the National Academy of Sciences. 2009; 106 :20405 - 20410. doi: 10.1073/pnas.0911570106Google Scholar
  158. J. Viña et al., Mitochondrial biogenesis in exercise and in ageing.. Advanced drug delivery reviews. 2009; 61 14 :1369-74. doi: 10.1016/j.addr.2009.06.006Google Scholar
  159. M. Dietrich et al., Feeding signals and brain circuitry. European Journal of Neuroscience. 2009; 30 :. doi: 10.1111/j.1460-9568.2009.06963.xGoogle Scholar
  160. D. Shackelford et al., The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nature Reviews Cancer. 2009; 9 :563-575. doi: 10.1038/nrc2676Google Scholar
  161. Thomas Büch et al., Pertussis Toxin-sensitive Signaling of Melanocortin-4 Receptors in Hypothalamic GT1-7 Cells Defines Agouti-related Protein as a Biased Agonist*. The Journal of Biological Chemistry. 2009; 284 :26411 - 26420. doi: 10.1074/jbc.M109.039339Google Scholar
  162. C. Cantó et al., AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009; 458 :1056-1060. doi: 10.1038/nature07813Google Scholar
  163. Fan Lan et al., SIRT1 Modulation of the Acetylation Status, Cytosolic Localization, and Activity of LKB1. Journal of Biological Chemistry. 2008; 283 :27628 - 27635. doi: 10.1074/jbc.M805711200Google Scholar
  164. M. Fulco et al., Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt.. Developmental cell. 2008; 14 5 :661-73. doi: 10.1016/j.devcel.2008.02.004Google Scholar
  165. S. McGee et al., AMP-Activated Protein Kinase Regulates GLUT4 Transcription by Phosphorylating Histone Deacetylase 5. Diabetes. 2008; 57 :860 - 867. doi: 10.2337/db07-0843Google Scholar
  166. K. McClellan et al., GABAB receptors role in cell migration and positioning within the ventromedial nucleus of the hypothalamus. Neuroscience. 2008; 151 :1119-1131. doi: 10.1016/j.neuroscience.2007.11.048Google Scholar
  167. D. Kohno et al., Ghrelin raises [Ca2+]i via AMPK in hypothalamic arcuate nucleus NPY neurons.. Biochemical and biophysical research communications. 2008; 366 2 :388-92. doi: 10.1016/J.BBRC.2007.11.166Google Scholar
  168. C. Bonnard et al., Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice.. The Journal of clinical investigation. 2008; 118 2 :789-800. doi: 10.1172/JCI32601Google Scholar
  169. G. Twig et al., Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. The EMBO Journal. 2008; 27 :. doi: 10.1038/sj.emboj.7601963Google Scholar
  170. M. Claret et al., AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons.. The Journal of clinical investigation. 2007; 117 8 :2325-36. doi: 10.1172/JCI31516Google Scholar
  171. S. Jäger et al., AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proceedings of the National Academy of Sciences. 2007; 104 :12017 - 12022. doi: 10.1073/pnas.0705070104Google Scholar
  172. M. Ryan et al., Mitochondrial-nuclear communications.. Annual review of biochemistry. 2007; 76 :701-22. doi: 10.1146/ANNUREV.BIOCHEM.76.052305.091720Google Scholar
  173. A. Civitarese et al., Calorie Restriction Increases Muscle Mitochondrial Biogenesis in Healthy Humans. PLoS Medicine. 2007; 4 :. doi: 10.1371/journal.pmed.0040076Google Scholar
  174. Li-Teh Chang et al., Downregulation of peroxisme proliferator activated receptor gamma co-activator 1alpha in diabetic rats.. International heart journal. 2006; 47 6 :901-10. doi: 10.1536/IHJ.47.901Google Scholar
  175. D. Chan et al., Mitochondrial fusion and fission in mammals.. Annual review of cell and developmental biology. 2006; 22 :79-99. doi: 10.1146/ANNUREV.CELLBIO.22.010305.104638Google Scholar
  176. B. Beck et al., Neuropeptide Y in normal eating and in genetic and dietary-induced obesity. Philosophical Transactions of the Royal Society B: Biological Sciences. 2006; 361 :1159 - 1185. doi: 10.1098/rstb.2006.1855Google Scholar
  177. I. Boldogh et al., Interactions of mitochondria with the actin cytoskeleton.. Biochimica et biophysica acta. 2006; 1763 5-6 :450-62. doi: 10.1016/J.BBAMCR.2006.02.014Google Scholar
  178. Tianzheng Yu et al., Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology.. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103 8 :2653-8. doi: 10.1073/PNAS.0511154103Google Scholar
  179. S. Sternson et al., Topographic mapping of VMH → arcuate nucleus microcircuits and their reorganization by fasting. Nature Neuroscience. 2005; 8 :1356-1363. doi: 10.1038/nn1550Google Scholar
  180. M. Roden et al., Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. International Journal of Obesity. 2005; 29 :S111-S115. doi: 10.1038/sj.ijo.0803102Google Scholar
  181. Hsiuchen Chen et al., Disruption of Fusion Results in Mitochondrial Heterogeneity and Dysfunction*. Journal of Biological Chemistry. 2005; 280 :26185 - 26192. doi: 10.1074/JBC.M503062200Google Scholar
  182. R. Cone et al., Anatomy and regulation of the central melanocortin system. Nature Neuroscience. 2005; 8 :571-578. doi: 10.1038/nn1455Google Scholar
  183. S. Nemoto et al., SIRT1 Functionally Interacts with the Metabolic Regulator and Transcriptional Coactivator PGC-1α*. Journal of Biological Chemistry. 2005; 280 :16456 - 16460. doi: 10.1074/jbc.M501485200Google Scholar
  184. J. Lemasters et al., Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging.. Rejuvenation research. 2005; 8 1 :3-5. doi: 10.1089/REJ.2005.8.3Google Scholar
  185. Kanji A. Takahashi et al., Fasting induces a large, leptin-dependent increase in the intrinsic action potential frequency of orexigenic arcuate nucleus neuropeptide Y/Agouti-related protein neurons.. Endocrinology. 2005; 146 3 :1043-7. doi: 10.1210/EN.2004-1397Google Scholar
  186. B. Lowell et al., Mitochondrial Dysfunction and Type 2 Diabetes. Science. 2005; 307 :384 - 387. doi: 10.1126/SCIENCE.1104343Google Scholar
  187. I. Vanhorebeek et al., Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. The Lancet. 2005; 365 :53-59. doi: 10.1016/S0140-6736(04)17665-4Google Scholar
  188. A. Garnier et al., Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. The FASEB Journal. 2005; 19 :43 - 52. doi: 10.1096/fj.04-2173comGoogle Scholar
  189. C. Kaiser et al., Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation. BMC Biology. 2004; 2 :23 - 23. doi: 10.1186/1741-7007-2-23Google Scholar
  190. C. Mullins et al., The Biogenesis of Cellular Organelles. . 2004; :. doi: 10.1007/b138220Google Scholar
  191. J. Paltauf‐Doburzynska et al., Hyperglycemic Conditions Affect Shape and Ca2+ Homeostasis of Mitochondria in Endothelial Cells. Journal of Cardiovascular Pharmacology. 2004; 44 :423-436. doi: 10.1097/01.fjc.0000139449.64337.1bGoogle Scholar
  192. C. Bastie et al., CD36 in myocytes channels fatty acids to a lipase-accessible triglyceride pool that is related to cell lipid and insulin responsiveness.. Diabetes. 2004; 53 9 :2209-16. doi: 10.2337/DIABETES.53.9.2209Google Scholar
  193. R. Shulman et al., Energetic basis of brain activity: implications for neuroimaging. Trends in Neurosciences. 2004; 27 :489-495. doi: 10.1016/j.tins.2004.06.005Google Scholar
  194. G. King et al., Hyperglycemia-induced oxidative stress in diabetic complications. Histochemistry and Cell Biology. 2004; 122 :333-338. doi: 10.1007/s00418-004-0678-9Google Scholar
  195. A. Feldstein et al., Free fatty acids promote hepatic lipotoxicity by stimulating TNF‐α expression via a lysosomal pathway. Hepatology. 2004; 40 :. doi: 10.1002/hep.20283Google Scholar
  196. M. Top et al., Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nature Neuroscience. 2004; 7 :493-494. doi: 10.1038/nn1226Google Scholar
  197. L. Griparić et al., Loss of the Intermembrane Space Protein Mgm1/OPA1 Induces Swelling and Localized Constrictions along the Lengths of Mitochondria*. Journal of Biological Chemistry. 2004; 279 :18792 - 18798. doi: 10.1074/JBC.M400920200Google Scholar
  198. Y. Nishio et al., Regulation and Role of the Mitochondrial Transcription Factor in the Diabetic Rat Heart. Annals of the New York Academy of Sciences. 2004; 1011 :. doi: 10.1196/annals.1293.009Google Scholar
  199. A. Russell et al., Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle.. Diabetes. 2003; 52 12 :2874-81. doi: 10.2337/DIABETES.52.12.2874Google Scholar
  200. K. Short et al., Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity.. Diabetes. 2003; 52 8 :1888-96. doi: 10.2337/DIABETES.52.8.1888Google Scholar
  201. M. Cowley et al., The Distribution and Mechanism of Action of Ghrelin in the CNS Demonstrates a Novel Hypothalamic Circuit Regulating Energy Homeostasis. Neuron. 2003; 37 :649-661. doi: 10.1016/S0896-6273(03)00063-1Google Scholar
  202. H. Pilegaard et al., Exercise induces transient transcriptional activation of the PGC‐1α gene in human skeletal muscle. The Journal of Physiology. 2003; 546 :. doi: 10.1113/jphysiol.2002.034850Google Scholar
  203. Hsiuchen Chen et al., Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of Cell Biology. 2003; 160 :189 - 200. doi: 10.1083/jcb.200211046Google Scholar
  204. K. Baar et al., Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC‐1. The FASEB Journal. 2002; 16 :1879 - 1886. doi: 10.1096/fj.02-0367comGoogle Scholar
  205. D. Kelley et al., Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes.. Diabetes. 2002; 51 10 :2944-50. doi: 10.2337/DIABETES.51.10.2944Google Scholar
  206. B. Hegarty et al., Increased efficiency of fatty acid uptake contributes to lipid accumulation in skeletal muscle of high fat-fed insulin-resistant rats.. Diabetes. 2002; 51 5 :1477-84. doi: 10.2337/DIABETES.51.5.1477Google Scholar
  207. O. Bachmann et al., Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans.. Diabetes. 2001; 50 11 :2579-84. doi: 10.2337/DIABETES.50.11.2579Google Scholar
  208. M. Cowley et al., Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001; 411 :480-484. doi: 10.1038/35078085Google Scholar
  209. D. Hood et al., Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle.. Journal of applied physiology. 2001; 90 3 :1137-57. doi: 10.1152/JAPPL.2001.90.3.1137Google Scholar
  210. D. Spanswick et al., Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nature Neuroscience. 2000; 3 :757-758. doi: 10.1038/77660Google Scholar
  211. D. Kelley et al., Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss.. American journal of physiology. Endocrinology and metabolism. 1999; 277 6 :E1130-E1141. doi: 10.1152/ajpendo.1999.277.6.E1130Google Scholar
  212. J. Simoneau et al., Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. The FASEB Journal. 1999; 13 :2051 - 2060. doi: 10.1096/fasebj.13.14.2051Google Scholar
  213. C. Schmitz‐Peiffer et al., Ceramide Generation Is Sufficient to Account for the Inhibition of the Insulin-stimulated PKB Pathway in C2C12 Skeletal Muscle Cells Pretreated with Palmitate*. The Journal of Biological Chemistry. 1999; 274 :24202 - 24210. doi: 10.1074/jbc.274.34.24202Google Scholar
  214. Zhidan Wu et al., Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1. Cell. 1999; 98 :115-124. doi: 10.1016/S0092-8674(00)80611-XGoogle Scholar
  215. F. Kokot et al., Effects of Neuropeptide Y on Appetite. Mineral and Electrolyte Metabolism. 1999; 25 :303 - 305. doi: 10.1159/000057464Google Scholar
  216. C. Broberger et al., The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice.. Proceedings of the National Academy of Sciences of the United States of America. 1998; 95 25 :15043-8. doi: 10.1073/PNAS.95.25.15043Google Scholar
  217. T. M. Hahn et al., Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature Neuroscience. 1998; 1 :271-272. doi: 10.1038/1082Google Scholar
  218. Yosuke Tanaka et al., Targeted Disruption of Mouse Conventional Kinesin Heavy Chain kif5B, Results in Abnormal Perinuclear Clustering of Mitochondria. Cell. 1998; 93 :1147-1158. doi: 10.1016/S0092-8674(00)81459-2Google Scholar
  219. D. Spanswick et al., Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature. 1997; 390 :521-525. doi: 10.1038/37379Google Scholar
  220. M. Ollmann et al., Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein.. Science. 1997; 278 5335 :135-8. doi: 10.1126/SCIENCE.278.5335.135Google Scholar
  221. T. Horvath et al., Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations. Brain Research. 1997; 756 :283-286. doi: 10.1016/S0006-8993(97)00184-4Google Scholar
  222. D. Essig et al., Contractile Activity‐Induced Mitochondrial Biogenesis in Skeletal Muscle. Exercise and Sport Sciences Reviews. 1996; 24 :289–320. doi: 10.1249/00003677-199600240-00012Google Scholar
  223. M. Nangaku et al., KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell. 1994; 79 :1209-1220. doi: 10.1016/0092-8674(94)90012-4Google Scholar
  224. T. Horvath et al., Neuropeptide-Y innervation of beta-endorphin-containing cells in the rat mediobasal hypothalamus: a light and electron microscopic double immunostaining analysis.. Endocrinology. 1992; 131 5 :2461-7. doi: 10.1210/ENDO.131.5.1425443Google Scholar
  225. J. Friedenwald et al., The vascular lesions of diabetic retinopathy.. Bulletin of the Johns Hopkins Hospital. 1950; 86 4 :253-4. doi: 10.1210/ENDO.131.5.1425443Google Scholar
  226. Xin Zhang et al., Involvement of mitochondrial fission in calcium sensing receptor-mediated vascular smooth muscle cells proliferation during hypertension.. Biochemical and biophysical research communications. 2018; 495 1 :454-460. doi: 10.1016/j.bbrc.2017.11.048Google Scholar
  227. Citlaly Gutiérrez-Rodelo et al., [Molecular Mechanisms of Insulin Resistance: An Update].. Gaceta medica de Mexico. 2017; 153 2 :214-228. doi: 10.1016/j.bbrc.2017.11.048Google Scholar
  228. N. Diaz-Morales et al., Are Mitochondrial Fusion and Fission Impaired in Leukocytes of Type 2 Diabetic Patients?. Antioxidants & redox signaling. 2016; 25 2 :108-15. doi: 10.1089/ars.2016.6707Google Scholar
  229. A. Del Campo et al., Mitochondrial fragmentation impairs insulin-dependent glucose uptake by modulating Akt activity through mitochondrial Ca2+ uptake.. American journal of physiology. Endocrinology and metabolism. 2014; 306 1 :E1-E13. doi: 10.1152/ajpendo.00146.2013Google Scholar
  230. Shiny Abhijit et al., Hyperinsulinemia-induced vascular smooth muscle cell (VSMC) migration and proliferation is mediated by converging mechanisms of mitochondrial dysfunction and oxidative stress. Molecular and Cellular Biochemistry. 2012; 373 :95-105. doi: 10.1007/s11010-012-1478-5Google Scholar
  231. J. L. Edwards et al., Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia. 2009; 53 :160-169. doi: 10.1007/s00125-009-1553-yGoogle Scholar
  232. S. Jäger et al., AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha.. Proceedings of the National Academy of Sciences of the United States of America. 2007; 104 29 :12017-22. doi: 10.1007/s00125-009-1553-yGoogle Scholar
  233. R. Semple et al., Expression of the thermogenic nuclear hormone receptor coactivator PGC-1α is reduced in the adipose tissue of morbidly obese subjects. International Journal of Obesity. 2004; 28 :176-179. doi: 10.1038/sj.ijo.0802482Google Scholar
  234. Khavin Ib et al., WHO classification of diabetes mellitus. Problemy e̊ndokrinologii. 1984; 30 :36. doi: 10.1038/sj.ijo.0802482Google Scholar
Đã xuất bản: 23 April 2023
Tạp chí: Cells
Nhà xuất bản: MDPI AG
ISSN: 2073-4409
Tập: 12
Số xuất bản: 9
Loại nghiên cứu: Nghiên cứu Quốc tế

Trích dẫn bài viết này

Tin Van Huynh1, 2, Lekha Rethi3, 4, Lekshmi Rethi4, Chih-Hwa Chen3, 5, 6, Yi-Jen Chen7, 8, Yu-Hsun Kao7, 9. The Complex Interplay between Imbalanced Mitochondrial Dynamics and Metabolic Disorders in Type 2 Diabetes. Cells. 2023. 12 (9). doi:10.3390/cells12091223